How Astronomers Observe the Supernova Explosions?

- Roles of the Korean Neutrino Observatory (KNO)

2024 July 25

한국천문연구원 Korea Astronomy & Space Science Institute (KASI)

김상철(Sang Chul KIM)

sckim@kasi.re.kr

Contents

- KASI
- Supernovae (SNe) burst Ia, CC KMTNet Telescopes
- SN science Neutrino science
- Relic SNe
- Failed SNe
- Precursors of SNe

Korea Astronomy & Space Science Institute (KASI) 천문학 우주과학 Universe (우주) Space (우주)

Neutrino Sources

Neutrinos from Supernovae (SNe)

- Nearby core collapse SNe
- Relic SNe
- Failed SNe
- Precursors of SNe (Supergiant Stars)

Nearby Core Collapse SNe

- Neutrino comes out first from the core collapse (CC)
- supernova energy
 - 99% comes as neutrinos
 - ~1% comes as kinetic energy
 - ~0.01% optical emission
- Neutrino telescope can give fast alert to optical and other λ observatories \rightarrow need arrival time + direction
- Sciences from SN early detection
 - progenitors
 - explosion mechanism
 - fast decay optical transients

Stellar Evolution

- Mass, Mass loss \rightarrow final stages
- Low-mass stars \rightarrow White Dwarfs (WDs), binary system \rightarrow SN Ia
- Massive ($\geq 8 M_{\odot}$) stars \rightarrow core-collapse SN

http://earthspacecircle.blogspot.kr/2013/07/stellar-evolution.html

Supernova (SN) types

- Supernovae : Brightest objects in galaxies (M_v = -14 \sim -22)
- Typical types

No H lines (pop II) \rightarrow Type Ia Ib Ic

핵색왜성 기원 초신성

핵붕괴 초신성

http://dujs.dartmouth.edu/2008/05/type-ia-supernovae-properties-models-and-theories-of-their-progenitor-systems http://wwwmpa.mpa-garching.mpg.de/mpa/research/current_research/hl2013-8/hl2013-8-en.html http://spiff.rit.edu/richmond/sdss/sn_survey/sn_survey.html

Supernova (SN) types

- Supernovae : Brightest objects in galaxies (M_v = -14 \sim -22)
- Typical types
 No H lines (pop II) → Type Ia

WD + Giant/MS/He * (Single Degenerate, SD)

WD + WD (Double Degenerate, DD) H lines (pop I) \rightarrow Type II Ib

Core collapse

CC 5Ne

핵붕괴 초신성

SNe Ia (thermonuclear stellar explosion) (WD originated SNe) 백색왜성 기원 초신성

http://dujs.dartmouth.edu/2008/05/type-ia-supernovae-properties-models-and-theories-of-their-progenitor-systems http://wwwmpa.mpa-garching.mpg.de/mpa/research/current_research/hl2013-8/hl2013-8-en.html http://spiff.rit.edu/richmond/sdss/sn_survey/sn_survey.html

Figure 2. The detailed classification of SNe requires not only the identification of specific features in the early spectra, but also the analysis of the line profiles, luminosity and spectral evolutions

SNe : Ia vs CC

Milky Way SN Rate

(per century)

Method	CC SN	SN Ia	All SNe	Authors
Historical SN	3.4 ^{+7.3} -2.6	$1.4_{-0.8}^{+1.4}$	4.6 ^{+7.4} -2.7	Adams+13 ApJ 778 164
SN statistics	2.30±0.4 8	0.54±0.1 2	2.84±0.6 0	W. Li+11 MN 412 1441
SFR	1-2			Reed 05 AJ 130 1652
²⁶ AI	1.9±1.1	••••	•••	Diehl+06 Nature 439 45
Pulsar	3.2-3.7	•••	••••	Faucher-Giguere & Kaspi 06 ApJ 643 332
No neutrino burst	≤ <mark>11.4</mark>	•••		Agafonova+15 ApJ 802 47

→ Galactic CC SN rate \sim 2-3 SNe/100 years

SN 1604 Oct 8 (type Ia)

Milky Way Supernovae

- Last (known through SN remnant)
 - 1680 Cassiopeia A (Changbom Park et al. 2016 JKAS 49 233)
 - G1.9+0.3 : year 1899±9 (Chakraborti+16 ApJ 819 37)
- The World is waiting for a new SN! And observing extragalactic SNe!

SN Explosion

SN 1987A (II peculiar)

Large Magellanic Cloud (LMC)

Tarantula Nebula

d=49.97 kpc (Pietrzynski+ 13 Natur 495 76) Or

 $51.2~\pm~3.1~kpc$ (Panagia+91 ApJL 380 L23)

1987 Feb 23.316 (UT)

B3 I (supergiant star)

Sanduleak -69° 202

Peak : +2.9 mag

(B-V) = +0.085

 $M_{initial} \sim 20~M_{\odot}$ (N. Smith 07 AJ 133 1034)

10⁵⁸ Neutrinos from SN 1987A

- 1987 Feb 23, 07:35:35 (UT) @ d = 50 kpc
- Kamiokande II 11 events (12.44 seconds)
- Irvine-Michigan-Brookhaven-3 (IMB, Lake Erie) 8 events (5.58 seconds)

IMB : Bionta+ 87 Phys. Rev. Lett. 58, 1494

Shock Breakout (SBO)

Early bolometric light curve(LC)

Early bolometric light curve(LC)

Models

- Same explosion energy
- Different initial radius

To avoid the effect of Earth rotation

KMTNet - 24hour coverage!

- Korea Microlensing Telescope Network
- Three Identical Observing Systems:
 CTIO in Chile, SAAO in South Africa, SSO in Australia
- 24-hours Monitoring of night sky at Southern Hemisphere
- Primary Mirror with 1.6m Diameter

KMTNet – Wide-field!

- 4 Chips with 9K x 9K pixels
- 0.4 arcsec/pixel,
- 2°x2° wide-field of view (FOV)

"Star never sets on the KMTNet"

Efforts to detect early SNe Ia

KMTNet light curves reveal early reddening – never seen before

Data from multi-wavelength campaign

Comparison with various models: Shock Break Out, Companion-Ejecta Interaction, Circumstellar Emission and He Double Detonation

Observed spectra confirm that it is a normal Type Ia supernova from He Double Detonation

SN 2018aoz : originated from helium-shell double detonation

Triggered by a WD companion

The origin of normal Type Ia SNe!

Using Neutrinos for SNe Science

SNEWS: SuperNova Early Warning System

• Similar to "Seismic waves in(on) the Earth"

SNEWS: SuperNova Early Warning System

- http://snews.bnl.gov/
- A network of 7 neutrino detectors
 - Borexino, Daya Bay, KamLAND, HALO, IceCube, LVD, Super-Kamiokande
 - began automatic operation in 2005
 - reports gather + identify SNe at Brookhaven National Laboratory
 - \rightarrow need signals at \geq 2 detectors within 10 seconds
- To make early warning for CC SNe from the Milky Way, or nearby galaxies (e.g. LMC, Canis Major dwarf)
- Neutrino pulses from SN 1987A arrived 3 hours before the photons

Studying the Neutrinos Themselves

- Nearby CC SNe!

SN burst observation by KNO

Nearby CC SNe

If There is No SN...

Then What?

Neutrinos from SNe

- Relic SNe
- Failed SNe
- Precursors of SNe (Supergiant Stars)

- Supernova Relic Neutrino (SRN) : Neutrinos emitted from past SNe since the beginning of the Universe – esp. below 20 MeV
- ~ Diffuse Supernova Neutrino Background (DSNB, or flux $DSN\nu F$)

Physics motivation : supernova rate (SNR) problem

Horiuchi+11 ApJ 738 154

- Supernova Relic Neutrino (SRN) : Neutrinos emitted from past SNe since the beginning of the Universe – esp. below 20 MeV
 - \rightarrow SRN energy spectrum measurement, history of SN bursts

- Supernova Relic Neutrino (SRN) : Neutrinos emitted from past SNe since the beginning of the Universe – esp. below 20 MeV
 - \rightarrow SRN energy spectrum measurement, history of SN bursts

 Supernova Relic Neutrino (SRN) : Neutrinos emitted from past SNe since the beginning of the Universe – esp. below 20 MeV

 \rightarrow SRN energy spectrum measurement, history of SN bursts

Neutrinos from SNe

- Relic SNe
- Failed SNe (fSNe)
- Precursors of SNe (Supergiant Stars)

- Massive stars : $M_i \ge 8 M_{\odot}$
- Evolution Fe core + envelope
- explosion \rightarrow core-collapse supernova
- Failed explosion \rightarrow black hole

Confirmed black holes and mass determinations

System	$P_{ m orb}$ [days]	$f(M) \ [M_{\odot}]$	Donor Spect. Type	Classification	${M_{\mathbf{x}}}^{\dagger} \ [M_{\odot}]$
GRS $1915 + 105^{a}$	33.5	9.5 ± 3.0	K/M III	LMXB/Transient	14 ± 4
V404 Cyg	6.471	6.09 ± 0.04	K0 IV	,,	12 ± 2
Cyg X-1	5.600	0.244 ± 0.005	$09.7 \; \mathrm{Iab}$	HMXB/Persistent	10 ± 3
LMC X-1	4.229	0.14 ± 0.05	07 III	>>	> 4
XTE J1819-254	2.816	3.13 ± 0.13	B9 III	IMXB/Transient	7.1 ± 0.3
GRO J1655-40	2.620	2.73 ± 0.09	F3/5 IV	,,	6.3 ± 0.3
BW Cir^{b}	2.545	5.74 ± 0.29	G5 IV	LMXB/Transient	> 7.8
GX 339-4	1.754	5.8 ± 0.5	<u>1993</u>	,,	
LMC X-3	1.704	2.3 ± 0.3	B3 V	HMXB/Persistent	7.6 ± 1.3
XTE J1550-564	1.542	6.86 ± 0.71	G8/K8 IV	LMXB/Transient	9.6 ± 1.2
4U 1543-475	1.125	0.25 ± 0.01	A2 V	IMXB/Transient	9.4 ± 1.0
H1705-250	0.520	4.86 ± 0.13	K3/7 V	LMXB/Transient	6 ± 2
GS 1124-684	0.433	3.01 ± 0.15	K3/5 V	,,	7.0 ± 0.6
XTE J1859 $+226^{c}$	0.382	7.4 ± 1.1	<u></u>	,,	
GS2000+250	0.345	5.01 ± 0.12	K3/7 V	,,	7.5 ± 0.3
A0620-003	0.325	2.72 ± 0.06	K4 V	,,	11 ± 2
XTE J1650-500	0.321	2.73 ± 0.56	K4 V	"	
GRS 1009-45	0.283	3.17 ± 0.12	K7/M0 V	,,	5.2 ± 0.6
GRO J0422+32	0.212	1.19 ± 0.02	M2 V	.,,	4 ± 1
XTE J1118+480	0.171	6.3 ± 0.2	m K5/M0~V	,,	6.8 ± 0.4

Table 1. Confirmed black holes and mass determinations

Casares 2007 IAU Symp. 238, p. 3

Compact objects mass distributions

Figure 4. Left: Mass distribution of compact objects in X-ray binaries. Arrows indicate lower limits to BH masses. Right: observed mass distribution of compact objects in X-ray binaries (shaded histogram), compared to the theoretical distribution computed in Fryer & Kalogera (2001) for the "Case C + Winds" scenario (dotted line). Mass-loss rates by Woosley, Langer & Weaver (1995) were used in the computations. The model distribution has been re-scaled for clarity.

 $4 \le M \le 14 M_{\odot}$ Casares 2007 IAU Symp. 238, p. 3

Color-magnitude diagram (~HR diagram) of massive stars + evolutionary tracks

Supernova progenitor mass distributions N(>M)

Horiuchi+18 MNRAS 475 1363

- Massive stars : $M_i \ge 8 M_{\odot}$
- Evolution Fe core + envelope
- explosion \rightarrow core-collapse supernova \rightarrow neutron star
- Failed explosion \rightarrow black hole
- Neutrino detection from this direct BH formation → observational evidence of a BH formation

- Failed explosion contribution : important ingredient for precise modeling of Supernova Relic Neutrino (SRN) (Diffuse Supernova Neutrino Background, DSNB) (Keehn & Lunardini 2012)
- Fraction of massive stars undergoing collapse to BHs $\geq 20\%$ (Horiuchi+18)
- A search for the disappearances of massive stars (Kochanek+08) → failed explosion fraction ~ 4 - 43% (Horiuchi+18, Adams+17)
 - \rightarrow valuable constraint on the SRN

Neutrinos from Supernovae (SNe)

- Relic SNe
- Failed SNe
- Precursors of SNe (Supergiant Stars)

Neutrinos from Supergiant Stars

- Red supergiant (RSG) problem : RSGs from CC SNe observations \rightarrow progenitor initial masses \leq 17 $\rm M_{\odot}$
- Theory predicts the upper limit ~ 25 $\rm M_{\odot}$ (Smartt 2009, 2015)

Neutrinos from Supergiant Stars

Theoretical Evolutionary Timetable for Massive Stars [10⁵ years]

		15 M⊙		30 M⊙		60 M⊙	
COLOR	PHASE	Without v	With v	Without v	With v	Without v	With v
Blue/red Red	Core He burning Contraction of He core	11 0 0.7	11 0 0.7	53 0.2	5.3 0 2	34 01	3 4 0.1
Red	Contraction of C/O core	0.2	0.1	0 07	0 05	0.03	0.02
Red	Core C, Ne, O burning*	46	0.02-~0	3-4	0.01-~0	3–3	0.01-~0
	Maximum $ au_{\rm blue}/ au_{\rm red}$	2	~15	1.5	~ 20	1	~25

* Range indicates ($X_{\rm C} = 1.0, X_{\rm O} = 0.0$) and ($X_{\rm C} = 0.0, X_{\rm O} = 1.0$), respectively, at the end of core-helium burning

- Detection of neutrinos from nearby supergiant stars
- Evolutionary lifetimes of each stage

Thermonuclear Energy Generation Stages

Table 1 Evolution of a 15-solar-mass star.

Stage	Timescale	Fuel or product	Ash or product	Temperature (10 ⁹ K)	Density (gm cm ⁻³)	Luminosity (solar units)	Neutrino losses (solar units)
Hydrogen	11 Myr	Н	Не	0.035	5.8	28,000	1,800
Helium	2.0 Myr	He	C , O	0.18	1,390	44,000	1,900
Carbon	2000 yr	С	Ne, Mg	0.81	2.8×10^{5}	72,000	3.7×10^{5}
Neon	0.7 yr	Ne	0, Mg	1.6	1.2×10^{7}	75,000	$1.4 imes 10^{8}$
Oxygen	2.6 yr	O, Mg	Si, S, Ar, Ca	1.9	8.8×10^{6}	75,000	9.1×10^{8}
Silicon	18 d	Si, S, Ar, Ca	Fe, Ni, Cr, Ti,	3.3	4.8×10^{7}	75,000	1.3×10^{11}
Iron core	\sim 1 s	Fe, Ni, Cr, Ti,	Neutron star	>7.1	$> 7.3 \times 10^{9}$	75,000	$> 3.6 \times 10^{15}$
collapse*							
* The pre-supe	rnova star is defined I	by the time at which the contra	action speed anywhere in the	e iron core reaches 1,000	km s⁻¹.		

Neutrinos from Supergiant Stars

Stage	<e<sub>v> (mev)</e<sub>	Total Energy (ergs)	Duration (years)	
Main sequence	0.26	10 ⁴⁹	3×10 ⁹	
(Hydrogen burning)	0.8	4×10 ⁴⁹	3×109	
(Beta process)	7.	4×1044	3×109	
Red giant (Helium burning and plas- ma process)	10 kev	1047	10 ⁸	
Late stages (pre- supernova, photo- neutrino and pair annihilation pro- cesses)	100 kev →1 mev URCA process 2.58 mev	1050	10 ⁴ very rapidly	
Supernova ex- plosion and	100 mev	up to 10 ⁵⁴ ? •	a fraction of a second?	
collapse	Very uncertain	Numbers vary, depending on wh speculates		
White dwarfs (plasma process) $1 \rightarrow 10$ kev		~10*	10 ⁸ ~10 ⁹	

Stellar neutrino emission

The average lifetime = 3×10^9 yr,

Total optical energy output = 3×10^{50} erg

Summary

Neutrino research - Astronomical applications

- Core-collapse supernovae in the Milky Way and Nearby Galaxies (probably in the Local Group) within a few Mpc
 → Win-Win (both for SN science + Neutrino science)
- Detection of failed explosion to form BHs
- Supernova relic neutrinos (SRN) → SRN energy spectrum measurement, history of SN bursts, cosmic star formation rate (SFR)

Sensitivity

arXiv:1805.04163v1

Design Report (Dated: May 9, 2018)

TABLE I. Expected sensitivities of the Hyper-Kamiokande experiment assuming 1 tank for 10 years.

Physics Target	Sensitivity	Conditions		
– Supernova burst ν	52,000–79,000 ν 's	@ Galactic center (10 kpc)		
	${\sim}10~\nu{\rm 's}$	@ M31 (Andromeda galaxy)		
$-$ Supernova relic ν	70 ν 's / 10 years	$10{-}30{\rm MeV},4.2\sigma$ non-zero significance		