

The RENO Experiment

Sanghoon Jeon

for the RENO Collaboration

K-Neutrino Symposium 2024 July 25-26, 2024

Neutrino in Standard Model

- Standard Model
 - zero-mass neutrinos
- Solar neutrino problem at 1960s
- Neutrino oscillation suggested

image from Google

Neutrino Oscillation

$$\begin{pmatrix} |\nu_{e}\rangle \\ |\nu_{\mu}\rangle \\ |\nu_{\tau}\rangle \end{pmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{bmatrix} \begin{pmatrix} |\nu_{1}\rangle \\ |\nu_{2}\rangle \\ |\nu_{3}\rangle \end{pmatrix}$$
PMNS matrix (θ_{12} , θ_{13} , θ_{23} , δ_{CP})
The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations."
$$\int \frac{m^{2}}{m^{2}(\theta_{23}) - 0.551 + 0.015} \int \frac{m^{2}}{m^{2}(\theta_{23}) - 0.51 + 0.015} \int \frac{$$

measured by the reactor experiments : RENO, Daya Bay, Double Chooz

- Reactor Experiment for Neutrino Oscillation
- reactor \bar{v}_e oscillation at Hanbit Nuclear Plant
- 9 institution and 40 physicsists

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

survival probability $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta m_{21}^2 \frac{L}{4E_{\nu}}\right) - \sin^2 2\theta_{13} \sin^2 \left(\Delta m_{ee}^2 \frac{L}{4E_{\nu}}\right)$ New Results from RENO by Sanghoon Jeon

Detector & \bar{v}_e **Detection**

The RENO Detectors

\bar{v}_e detection via inverse-beta-decay

- Identical for the far & near detectors
- Multi-layered structure for their own purposes

RENO Status & Data Taking

- RENO DAQ running
 Aug. 2011 ~ Mar. 2023.
- ~3800[days] livetime
- planning to re-operate DAQ of the near detector
 =>RENE experiment (sterile neutrino search)

Major Results from RENO & Future

- Precise measurement of $|\Delta m^2_{ee}|$ and θ_{13} with n-Gd capture
 - Phys. Rev. Lett. 108, 191802 (2012) 229[d]
 - Phys. Rev. Lett. 116, 211801 (2016) 500[d]
 - Phys. Rev. D 98, 012002(2018) 500[d]
 - Phys. Rev. Lett. 121, 201801 (2018) 2200[d]
 - 3800[d] days of data -> new result
- Measurement of θ_{13} with n-H capture
 - JHEP 04 029 (2020) 1500[d]
 - 2800[d] days of data
- reactor neutrino yield & spectrum
 - Phys. Rev. Lett. 122, 232501 (2019) 1800[d]
 - Phys. Rev. D 104, L111301 (2021) 2500[d]
 - 2500[d] days of data / fuel composition
- sterile neutrino search
 - Phys. Rev. Lett. 125, 191801 (2020) 2200[d]
 - Phys. Rev. D 105, L111101 (2022) 2500[d] x NEOS 180[d]

will be continued beyond 3800[d] analyses according to re-operation of the near detector.

will be finished with 3800[d] analyses.

IBD Candidate Sample & Background Estimation

- 1,211,995(144,667) $\bar{\nu}_e$ candidate events observed for near(far).
- The total background rates :
 - near : 9.08±0.18 [events/day] (2.5%)
 - far : 2.06±0.13 [events/day] (5.3%)

Detector	Near	Far
IBD rate	366.47 ± 0.33	38.70 ± 0.10
after background subtraction	357.39 ± 0.38	36.64 ± 0.16
total background rate	9.08 ± 0.18	2.06 ± 0.13
live time [days]	3307.25	3737.85

measured IBD and estimated background rates with 1.2 < E_p < 8.0 [MeV], given per day

IBD Prompt Spectrum

- A shape comparison between the observed IBD prompt spectrum and the prediction from a reactor \bar{v}_e model
 - data : observed IBD prompt spectrum after background subtraction
 - MC : prediction with best-fit oscillation
- The fractional difference between data and prediction in the lower panel
- A clear discrepancy between the observed and the predicted spectral shapes in the region of 5 [MeV]

Results of $|\Delta m_{ee}^2|$ and θ_{13}

Based on the measured far-to-near ratio of prompt spectra from the 3800[d] sample, $sin^2 2\theta_{13} = 0.0920 + 0.0044 (stat.) + 0.0041 (syst.) (6.4\% precision)$

 $\left|\Delta m_{ee}^{2}\right| = 2.57 + 0.10_{-0.11} (stat.) + 0.05_{-0.05} (syst.) [\times 10^{-3} eV^{2}]$ (4.5% precision)

source of the systematic uncertainty

	Δm_{ee}^2 [10 ⁻³ eV ²]	sin ² 2θ ₁₃ []
reactor	-	± 0.0013
detection efficiency	-	± 0.0032
energy scale	± 0.05	± 0.0016
backgrounds	± 0.02	± 0.0020

(reference) 2018 PRL

 $\begin{aligned} \sin^2 2\theta_{13} &= 0.0896 \pm 0.0048(stat.) \pm 0.0047(syst.) \\ |\Delta m^2_{ee}| &= 2.68 \pm 0.12(stat.) \pm 0.07(syst.) [\times 10^{-3} eV^2] \end{aligned}$

Energy & L/E Dependent \bar{v}_e Oscillation

Improvement

- Li/He Background Spectrum
 - extension of dataset
 - combined far & near spectrum
- reactor-related uncertainties
 - decomposition of detector-correlated & detector-uncorrelated components
 - only detector-uncorrelated component can be considered for far-to-near ratio analysis.

comparison of the Li/He spectrums

New Result(3800[d]) vs 2018 PRL(2200[d])

Precision of oscillation measurement in the RENO's analyses

	live time	precision	
		$sin^2 2\theta_{13}$	Δm^2_{ee}
2018 PRL	2200 [d]	7.5%	5.2%
new result	3800 [d]	6.4%	4.5%

Comparing with the 2018 PRL result, the new result gives 14% and 13% improved precision for $sin^2 2\theta_{13}$ and Δm_{ee}^2 each.

θ_{13} Measurement with n-H capture

Based on 2800[d] n-H sample,

 $sin^{2}(2\theta_{13}) = 0.082 \pm 0.007(stat.) \pm 0.011(syst.)$ (15.9% precision)

(reference) 2019 JHEP with 1500[d] $sin^2 2\theta_{13} = 0.086 \pm 0.008(stat.) \pm 0.014(syst.)$

This shows the possibility of Δm_{ee}^2 measurement in nH analysis. 14

Global Comparison

The new result shows good agreement with the global results.

Global Comparison for [Δm²₃₂] (Normal Ordering) RENO (3800d/nGd) Daya Bay (3158d/nGd) Daya Bay (1958d/nH) T2K-NOvA joint NOvA T2K-NOvA joint NOvA 2.4 2.5 2.6 2.7 2.8 2.9 [10³eV²]

 $\left|\Delta m_{32}^2\right|_{\text{Global C}}$

Reactor Neutrino Spectrum

Based on 2500[d] n-Gd + 2300[d] n-H, analysis for spectral decomposition was performed.

An analysis with the 3800[d] data set on-going

⁷New Results from RENO by Sanghoon Jeon

Sterile Neutrino Search

- RENO 2500[d] x NEOS joint

- exclusion at $0.1 < \Delta m_{41}^2 < 7 \text{ eV}^2$

- RENO 2200[d]
- stringent limits in $10^{-3} < \Delta m_{41}^2 < 0.1 \text{ eV}^2$

Summary

- The RENO experiment has precisely measured the amplitude and frequency of reactor \bar{v}_e oscillation at Hanbit Nuclear Power Plant since Aug. 2011.
- As of Mar. 2023, the RENO DAQ was shut down, and 3800[d] live time of dataset was obtained.
- From 3800[d] n-Gd sample,
 - 1,211,995(144,667) IBD candidates are observed during 3307.25(3737.85) [d] in the near(far) detector
 - the far-to-near ratio analysis gives

 - $sin^2 2\theta_{13} = 0.0920 + 0.0044 (stat.) + 0.0041 (syst.)$ (7.5% -> 6.4% precision improved) $\Delta m_{ee}^2 = 2.57 + 0.10 + 0.05 (syst.) [\times 10^{-3} eV^2]$ (5.2% -> 4.5% precision improved)

to be published

- In the future,
 - other analyses (n-H, \bar{v}_e spectrum, sterile neutrino, etc.) with the 3800[d] full data set
 - further improvements expected with a re-operating near detector.

Global Comparison Reference

experiment	reference
RENO (3800d/nGd)	new result
RENO (2800d/nH)	new result
Daya Bay (3158d/nGd)	PRL 130, 161802 (2023)
Daya Bay (1958d/nH)	arXiv:2406.01007
Double Chooz (1350d/nGd+nH+nC)	Neutrino 2020
T2K	EPJC 83, 782 (2023)
NOvA	arXiv:2311.07835
T2K-NOvA joint	Neutrino 2024
MINOS	PRL 125, 131802 (2020)