Status Report for RENE experiment

Dong Ho Moon Chonnam National University on behalf of RENE collaboration

2024/07/26 K-Neutrino Symposium

Introduction

• RENE : Reactor Experiment for Neutrino and Exotics (started at 2022)

- Plan to install the liquid scintillator based neutrino detector in the tendon gallery of the reactor in Yeonggwang
- Baseline : ~ 23 m

Physics goals

- ✓ Sterile neutrino search for Δm²₄₁ ~ 2 eV²
- Precise measurements of the flux and spectrum of reactor electrons and antineutrinos (5 MeV bump)
- Decomposition of the neutrino spectrum of ²³⁵U and ²³⁹Pu

LSND proposed the 4th neutrino hypothesis

• LSND (Liquid Scintillator Neutrino Detector) reported observation of excess

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Signal

Saw an excess of: $87.9 \pm 22.4 \pm 6.0$ events.

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 σ evidence for $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$

Possibility of new type of neutrino (4th neutrino ?)

Appearance

Los Alamos Meson Physics Facility, LANL 1993-1998

• Observed $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with baseline of 30 m ($\Delta m^2 \approx 1 \text{eV}^2 > \text{known other } \Delta m^2$)

Existence of 4th neutrino ?

Experiments	Neutrino source	signal	type	Significance σ
LSND	µ Decay-At-Rest	$\overline{v_{\mu}} \rightarrow \overline{v_{e}}$	appearance	3.8
MiniBooNE	π Decay-In-Flight	$v_{\mu} \rightarrow v_{e}$	appearance	4.5
		$V_{\mu} \rightarrow V_{e}$	appearance	2.8
		combined		4.7
Ga(calibration)	e capture	$v_e \rightarrow v_X$	disappearance	2.7
Reactors	Beta decay	$\overline{v_e} \rightarrow \overline{v_X}$	disappearance	3.0

Still room for 5 σ discovery

(3+1) Neutrino Model

Neutrino 2023 J. Ochoa-Ricoux

 $P(\overline{\nu}_e \to \overline{\nu}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(1.27 \Delta m_{31}^2 \frac{L}{E_{\nu}} \right) - \sin^2 2\theta_{14} \sin^2 \left(1.27 \Delta m_{41}^2 \frac{L}{E_{\nu}} \right)$

Reactor Neutrino Anomaly

Sterile neutrino at RENO

PRL 125 (2020) 191801

- Search for Sub-eV sterile neutrino in the 4 ν framework
- Orange line describes well data ($\Delta m_{41}^2 = 5 \times 10^{-3} \text{ eV}^2$)

Center for Precision

Neutrino

Research

RENO + NEOS joint analysis

• Hint for the sterile neutrino at $\Delta m^2 \sim 2 \text{ eV}^2$

Center fo Precision

Neutrino Research

- Need to improve systematics for confirmation of $sin^2\theta_{14}$
- p-value of inconsistency of 3 and 4 neutrino modes is 8.2 %

RENE collaboration

12 institutions and ~ 40 members

Neutrino detection (IBD)

Detector response simulation

Energy distributions of prompt signal for NEOS and RENO

• 2nd peaks appear below the main peaks

Center for Precision

Neutrino Research 중성미자정막연구세트

Significance of gamma catcher

- Escaping gammas induce the 2nd peak of energy distributions
- Gamma catcher can play an important role to smear the 2nd peak and get better resolution

Detector design for the prototype

- Detector inner structure
 - ✓ Cylindrical shape acrylic target filled with 0.5 % Gd-LS
 - Box type stainless steel gamma catcher filled with LS
 - Cone structure for efficient optical photon collection
 - ✓ Two 20-inch PMTs on left and right
 - ✓ PMT holder with Mu-metal shield

Shielding and outer VETO detector

- Shielding
 - ✓ Six borated PE plates with 100 mm thickness
- Veto detector
 - ✓ 15 plastic scintillator panels donated from the NEOS collaboration
 - ✓ 32 2-inch PMTs

Shielding and outer VETO detector

Target detector simulation

Detector construction

Manufactured gamma catcher and PMT holder with the stainless steel in 2024.04.15

All components are delivered into Yeonggwang.

Liquid scintillator

- The target will be filled with 0.5 % Gd-LS
- DIN will be added for PSD later (Pulse Shape Discrimination) : ~ 210 L 0.6 % Gd-LS is ready
- The gamma catcher will be filled with LS
- Stability check in KNU and CNU

Concentration is stable for over 7 months

• At RENO far site

20-inch PMT

Features

- 1. Fast time response
- 2. High stability

3. Low dark count Reference from Hamamatsu handbook

Specifications (typical)

Quantum Efficiency 30 % (390 nm), λ_{peak} : 420 nm

Gain (\rightarrow Charge) 1×10⁷ \rightarrow 1.6 pC (@Single Photoelectron, SPE)

Peak to Valley 1.5 ~ 2.8

Dynode structure

Box (efficient collection) & Line (uniform drift path)

Hamamatsu R12860

20-inch PMT

*Time response: Trigger time - PMT falling time

- Single photo electron : 1.48 (A), 1.51 (B) pC
- Peak to valley : ~ 3
- Acting voltage : 1750 V
- Gain, position dependence and after pulse study are done

DAQ system

DAQ equipment

DAQ schematic view

- PSD (pulse shape discrimination) will be performed by using FADC 500 at offline
- SADC will be used to control VETO signal

Center for Precision

Neutrino Research 중성미자정및연구센트

VETO detector performance

See poster J. Park

1. Polishing

중성미자정막연구세터

2. Shielding tyvek

5.10 14000 12000 10000 8000 x²/ndf : 10.47/16 first p.e. mean / error 6000 0.4588 / 0.0006 4000 2000 PMT model number : H7195 0.5 -0.5 0 1.5

PMT diameter : 60.0 mm

Coincidence test

- Ongoing to work in Yeonggwang
- Coincidence test with Cs137 and cosmic muons

5. Mount PMT

6. Mount PMT support

7. Completion

Short baseline (SBL) experiments

Neutrino 2023 J. Ochoa-Ricoux

Schedule

Year	2022				2023				2024				2025			
Month	1-3	4-6	6-9	10-12	1-3	4-6	6-9	10-12	1-3	4-6	6 <mark>-</mark> 9	10-12	1-3	4-6	6-9	10-12
Collaboration Start				*												
Design																
Simulation										,		>				
Gd-LS and LS																
DAQ																
PMT										\Rightarrow						
Construction										,						
DAQ Commissioning (RENO far site)																
RENE Data taking																\Rightarrow
Prototype RENE		F	RENE													

Summary and outlook

- Inspired by the hint of RENO-NEOS joint analysis, RENE has begun to search for the sterile neutrino around $\Delta m^2 \sim 2 \text{ eV}^2$
- Detector constructions are ongoing •
- Expecting timeline to install in tendon gallery is set to middle of October
- Please stay tuned to the RENE experiment

arXiv:2203.07214 and arXiv:2203.07361

체험 삶의 현장 영광 편

Reactor Neutrino Anomaly

Detector Assembly

Reactor Antineutrino Anomaly (RAA)

Measured Spectra of IBD Prompt Signal

RENO 2900 days (2200 + 700 days) : Aug. 2011 — Feb. 2020 - Clear excess at 5MeV compared to the Huber-Mueller prediction

Near detector live time: 2509 days #IBD candidates: 989,736 Background rate: $2.26 \pm 0.05 \%$ 5 MeV excess rate: $2.50 \pm 0.06 \%$ Far detector live time: 2908 days # IBD candidates: 120,383 Background rate: 4.77 ± 0.19 % 5 MeV excess rate: 2.26 ± 0.18 %

Neutrino Oscillation: L/E Dependence

Reactor Antineutrinos

Research

 Nuclear reactors are a flavor-pure, widely available, cost-effective, extremely intense and well-understood source of electron antineutrinos:

- A 1 GW_{th} core produces in one minute more neutrinos than the NuMI and BNB beams produced in a typical year

Types of Nuclear Reactors

Nuclear reactors fall into two main categories:

Low-Enriched Uranium (LEU)-fueled power reactors

- Commercial reactors
- Several GW of thermal power
- $\bar{\nu}_e$'s originate from fission products of 4 isotopes: ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U
- Fuel evolves as
 ²³⁵U is consumed
 and ^{239,241}Pu is
 produced

1.0e+18 1.0e+17 N 1.0e+16

10

Day of Cycle

15

20

25

Highly-Enriched Uranium (HEU)-

fueled reactors

Research reactors 50-100 MW of thermal power Almost all fissions are ²³⁵U

K-INeutrino Symposium, 2024/07/26, Dong Ho Moon

뿔 1.0e+15

51.0e+14

1.0e+13

1.0e+12

1.0e+11

θ_{13} Experiments

- The current generation of reactor experiments fall roughly into two categories:
 - 1) Experiments designed to measure the θ_{13} mixing angle:

- < 2 km baseline means only need "small" detectors (tens or hundreds of tons)</p>
- Looking for small (<10%) disappearance, so <u>key is keeping systematics under</u> <u>control</u>
- Near/far relative comparison allows to essentially cancel uncertainties in flux prediction and correlated detection efficiencies

SBL Experiments

• Wide range of detection media and approaches:

Non-Standard Flavor Mixing Landscape

K-Neutrino Symposium, 2024/07/26, Dong Ho Moon

 $\sin^2 2\theta_{ee}$

arXiv:2203.07214

Characterizing $\bar{\nu}_e$ emission

- Existing data can be also be used to characterize the emission of antineutrinos from nuclear reactors and to compare with prediction models:
 - Important for fundamental physics, non-proliferation applications, and as a stringent test of nuclear data inputs
- Two approaches to predict the reactor $\bar{\nu}_e$ rate and spectral shape:
 - Ab-initio method:
 - Bottom-up calculation using fission yields, Q values and decay branching ratios from nuclear data bases
 - Conversion method:
 - Converting measured beta spectra from thermal-neutron induced fission (²³⁵U, ²³⁹Pu, ²⁴¹Pu) at ILL in the 1980s to v
 _e spectra
 - Smaller estimated uncertainties (few %)
 - Latest implementation is the so-called Huber+Mueller (HM) model

Disagreements with Predictions

Some disagreements with prediction models came to light during the last decade:

- ~6% deficit in total flux with respect to the HM model at short baselines is known as the <u>"reactor antineutrino anomaly" (RAA)</u>
- Primary motivation for SBL sterile neutrino searches
- Not seen with recent summation models

- Main disagreement is often referred to as "the 5 MeV bump"
- Seen with both summation and conversion models

к-meutrino Symposium, 2024/07/20, Dong по woon

Current Status

- Good progress in understanding the reactor antineutrino anomaly:
 - New data* suggests that ²³⁵U beta spectrum from ILL underlying all conversion predictions is largely responsible for reactor antineutrino anomaly
 - Shape anomaly remains unexplained and is caused by a yet unknown issue affecting both conversion and summation predictions
 - All in all, sterile neutrino hypothesis
 not ruled out, but weakened

See <u>arXiv:2203.07214</u> for a detailed description

*new data = fuel evolution in LEU experiments, measurements in HEU experiments, measurement of ²³⁵U/²³⁹Pu beta spectra ratio at Kurchatov Institute

к-meumino Symposium, 2024/07/20, Dong по Moon

JUNO

See Yang Han's plenary talk on Thursday!

 $\times 10^{3}$

 JUNO is a large, next-generation reactor neutrino experiment under construction in China

- 53 km from 8 reactors
- Energy resolution of 3% at 1 MeV
- Rich physics program:
 - Neutrino mass ordering to 3σ in ~6 years
 - Sub-percent precision in oscillation parameters
 - Supernova, geo, atmospheric, solar neutrinos + searches for new physics Neutrino Symposium, 2024/07/26, Dong FIO IVIOON

4U

SuperChooz

- Proposal for next-generation θ_{13} reactor experiment
 - Soon to become the most poorly known mixing angle
- Far detector in existing cavern of old Chooz-A reactor (under decommissioning)

- Based on the new LiquidO detection technology
 - Opaque scintillator volume traversed by dense array of fibers
- In exploratory phase, demonstrator approved and under development

K-meutino Symposium, 2024/07/20, Dong 110 moon

See <u>Comms. Phys. 4, 273</u> (2021) for more information on LiquidO, and this <u>seminar</u> for more details on the project

Future SBL Experiments?

- There are also at least four new SBL experiments/upgrades in preparation:
 - DANSS and Neutrino-4 are being upgraded
 - There is a proposal for a PROSPECT-II detector:
 - · Address technical challenges of PROSPECT-I
 - · Able to relocate between HEU and LEU reactors

- JUNO will deploy a satellite detector called "TAO" at 30 m from one of the 4.6 GWth Taishan reactors
 - <2% energy resolution
 @ 1 MeV

veutring

Research

- All these experiments will search for sterile ν 's
 - TAO and PROSPECT-II will also improve our knowledge of the isotopic yields and spectra

CEvNS at Reactors

- An exciting new program using CEvNS at reactors is in its first stages
 - Pro: very high cross-section (can be orders of magnitude higher than IBD)
 - Con: very difficult to detect (only signal is low-energy recoiling nucleus)
- Search for deviations from Standard Model, hidden sector particles & interactions
- The race is on!
 - Vibrant effort in many reactors throughout the world with different technologies
 - First definitive detection of CEvNS from reactors expected soon

Z

boson

scintillation

nuclear

recoil

scattered neutrino

> secondary recoils

> > 43

arXiv:2203.07214 and arXiv:2203.07361

3+1 Neutrino Oscillation Framework

- The PMNS matrix is extended to 4x4 unitary matrix, and is parameterized as following $U_{PMNS} = R_{34}(\theta_{34}, \delta_{34}) R_{24}(\theta_{24}, \delta_{24}) R_{14}(\theta_{14}, 0) R_{23}(\theta_{23}, 0) R_{13}(\theta_{13}, \delta_{13}) R_{12}(\theta_{12}, 0)$
- The effective mixing angles $\theta_{\alpha\beta}$ for short-baseline oscillations are defined below $P_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \delta_{\alpha\beta} + (-1)^{\delta_{\alpha\beta}} \cdot \sin^{2} 2\theta_{\alpha\beta} \cdot \sin^{2} \left(1.267 \frac{\Delta m_{41}^{2} (eV^{2})L(m)}{E(MeV)} \right)$ $\nu_{e} \text{ disappearance } (\nu_{e} \rightarrow \nu_{e}): \qquad \sin^{2} 2\theta_{ee} = \sin^{2} 2\theta_{14}$ $\nu_{\mu} \text{ disappearance } (\nu_{\mu} \rightarrow \nu_{\mu}): \qquad \sin^{2} 2\theta_{\mu\mu} = 4\cos^{2} \theta_{14}\sin^{2} \theta_{24} (1 - \cos^{2} \theta_{14}\sin^{2} \theta_{24})$ $\nu_{e} \text{ appearance } (\nu_{\mu} \rightarrow \nu_{e}): \qquad \sin^{2} 2\theta_{\mu e} = \sin^{2} 2\theta_{14}\sin^{2} \theta_{24}$
- In MicroBooNE analysis, the above three oscillation effects are applied to all ν_e and ν_μ events; the ν_μ appearance (ν_e → ν_μ) is ignored because of tiny ^{ν_e flux rate}/_{ν_μ flux rate} ~ 0.005

‡ Fermilab

33

Sterile Neutrinos: 3+1 Framework

2D profiled result, full 3+1 analysis considering v_{μ} to v_{e} , v_{e} to v_{e} and v_{μ} to v_{μ} at each point in the parameter space.

 v_e disappearance-only (only v_e to v_e), more stringent limit corresponding to a fixed $\sin^2\theta_{24} = 0$.

2D profiled result, full 3+1 analysis considering v_{μ} to v_{e} , v_{e} to v_{e} and v_{μ} to v_{μ} at each point in the parameter space.

 v_e appearance-only (only v_μ to v_e), more stringent limit However, it is physically not allowed in the 3+1 framework. (nonzero v_e appearance requires both v_e and v_μ disappearance)

‡ Fermilab

36

The Reactor Antineutrino Anomaly (RAA)

2011: Re-evaluation of the predicted flux of antineutrinos coming from a reactor (PRC 83:054615)

 \rightarrow ~6% deficit measured compared to the prediction: **Reactor Antineutrino Anomaly** (RAA) (<u>PRD 83:073006</u>)

NEOS

(Neutrino Experiment for Oscillation at Short baseline)

RENO Near Detector

NEOS

Hanbit Nuclear Power Plant Comp

NEOS Result for sterile neutrino PRL 118 (2017) 121802

Reactor Neutrinos

Existence of 4th neutrino ?

Types of Nuclear Reactors

Nuclear reactors fall into two main categories:

Low-Enriched Uranium (LEU)-fueled power reactors

- Commercial reactors
- Several GW of thermal power
- $\bar{\nu}_e$'s originate from fission products of 4 isotopes: ²³⁵U, ²³⁹Pu, ²⁴¹Pu and ²³⁸U
- Fuel evolves as
 ²³⁵U is consumed and ^{239,241}Pu is
 produced

Highly-Enriched Uranium (HEU)fueled reactors

Day of Cycle

Research reactors 50-100 MW of thermal power Almost all fissions are ²³⁵U

