NEON (Neutrino Elastic-scattering Observation in Nal)

.

-

Chang Hyon Ha on behalf of NEON Korea- ν Symposium 2024, Gwangju

CHUNG-ANG UNIVERSITY

Motivation for the NEON experiment

- ago (stopped pion) by the COHERENT collaboration.
- Aim at detection of Coherent scattering in reactors.
 - Single flavor (electron anti-neutrino) & N^2 dependence
- Tests for BSM physics parameters (Light DM, Axion, Dark Photon, ...)
 - Reactors produce a large amount of the photon flux.

Akimov et al., Science 357, 1123-1126 (2017)

Coherent Scattering Experiment Review Many jump into bandwagon but still challenging in reactor.

Optimistic overview for coherent scattering!

Experiment	Detector	Mass	Threshold	Reactor/	Distance	Thermal	Neutrino	Location
				source	to source	power	flux v/cm ² /s	
COHERENT	Csl, Ar, Ge, Nal	15-185 kg	6.5-20 keVnr	πDAR	19-28 m		4.3*10 ⁷	USA
nuESS*	Csl, Ge, Xe, Ar			πDAR				Sweden
CICENNS*	CsI(Na)	300 kg	2 keVnr	πDAR	10.5 m		2*10 ⁷	China
Atucha-II	Si CCDs	2.5 g	40 eVee	Atucha-II	12 m	2 GW _{th}	2*10 ¹³	Argentina
BULLKID*	Si/Ge cryogenic	20 g	160 eV					Italy
CONNIE	Si CCDs	0.5 g	15 eVee	Angra-II	30 m	3.9 GW _{th}	7.8*10 ¹²	Brazil
CONUS	HPGe	3.74 kg	210 eVee	Brokdorf	17 m	3.9 GW _{th}	2*10 ¹³	Germany
CONUS+	HPGe	3.74 kg	150 eVee	Leibstadt	20.7 m	3.6 GW _{th}	1.45*10 ¹³	Switzerland
MINER*	Ge, Si, Al ₂ O ₃	1 kg	100 eVnr	TRIGA /	2-10 m	1 MW _{th}	~1*10 ¹²	USA
	cryogenic			HFIR*			0.111012	
NCC-1701	HPGe	3 kg	200 eVee	Dresden-II	8 m	2.96 GW _{th}	8.1*1013	USA
NEON	Nal(TI)	16.7 kg	200 eVee	Hanbit	23.7 m	2.815 GW _{th}	~1*1013	Korea
NEWS-G3*	Ar+2%CH4			tbc				Canada
NUCLEUS*	CaWO ₄ , Al ₂ O ₃	10 g	20 eVnr	Chooz	77 m,	2x2.45 GW _{th}	1.7*10 ¹²	France
	cryogenic				102 m			
NUXE*	LXe	10 kg		tbc				
nuGEN	HPGe	1.4 kg	200 eVee	Kalinin	11-12 m	3.1 GW _{th}	5.4*10 ¹³	Russia
RED-100	LXe, Lar*	200 kg		Kalinin	19 m	3.1 GW _{th}	1.35*10 ¹³	Russia
RECODE*	HPGe	1-2,10 kg	160 eVee	Sanmen	11, 22 m	3.4 GW _{th}	Up to 5.6*10 ¹³	China
RELICS*	LXe	50 kg	1 keVnr	Sanmen	22 m	3.4 GW _{th}	1.4*10 ¹³	China
Ricochet*	Ge, Zn, Al, Sn	680 g	160 eVee,	ILL-H7	8.8 m	58 MW _{th}	1.6*10 ¹²	France
ODO:	cryogenic	10 1-2	300 eVIII	the				1104
SBC	Ar	10 кд	100 evee	TDC	00	0.0.014	0.4*4.012	USA
TEXONO	HPGe	1.43 kg	200 eVee	Kuo-Sheng	28 m	2.9 GW _{th}	6.4*10*2	Taiwan

* in preparation Germanium Silicon Noble gases Cryogenic Scintillator Status and prospects on $CE\nu NS$ by Irina Nasteva (Neutrino 2024)

(the list may be incomplete)

Long way to go : Challenging Field (Neutrino 2024)

CONUS

IDM-2024 (Coherent Scattering with Solar ν) ⁸*B* neutrinos from Sun scatter off of Xenon Nuclei (XENONnT Dark Matter Direction detection)

Mass difference between ⁸*B* and ⁸*Be* is large ($Q \sim 17 \text{ MeV}$). $E_{rec}^{max} \sim 4 \text{ keV}$ on ¹³²*Xe* detectable in Dark Matter detectors.

IDM-2024 (Coherent Scattering with Solar ν) ⁸*B* neutrinos from Sun scatter off of Xenon Nuclei (XENONnT Dark Matter Direction detection)

XENONnT measures the CEvNS signal in Xe from solar 8B neutrinos for the first time!

The background-only hypothesis is disfavored at 2.73 σ

With more exposure, we expect to measure the solar ⁸B neutrino signal at higher significance and to better constrain the 8B neutrino flux

박병주, 전은주, 김경원, 김성현, 김영덕, IBS Center for Underground Physics (CUP) 고영주, 이서현, 이인수, 이현석, 이현수, IBS School, University of Science and 이재승, 오유민 Technology (UST) Seoul National University 최재진, 김선기 Korea Atomic Energy Research Institute 김진유 Chung-Ang University

The NEON Collaboration Active Members of COSINE and NEOS

Past one year activity of NEON

Publications

- First Direct Search for Light Dark Matter Using the NEON Experiment at a Nuclear Reactor, e-Print: 2407.16194
- Exclusion of the Cosmological Triangle in Reactor-Based Search for Axion-Like Particles, e-Print:2406.06117
- Upgrade of Nal(TI) crystal encapsulation for the NEON experiment, e-Print: 2404.03691
- Waveform Simulation for Scintillation Characteristics of Nal(TI) Crystal, Nucl.Instrum.Meth.A 1065 (2024) 169489
- Exploring coherent elastic neutrino-nucleus scattering using reactor electron antineutrinos in the NEON experiment, Eur.Phys.J.C 83 (2023) 3, 226

Milestones

Stable Operations (exposure~11,000 kg · day) Finished Two Analyses (Two Ph.D.) Identification of External Background **components (Radon-related)**

Doctor! Doctor!

- Very high light output crystal
 - COSINE-100 measures 15 P.E. / keVee

- Very high light output crystal
 - COSINE-100 measures 15 P.E. / keVee
- Relatively large nuclear recoil of Na
 - relevant for low energy neutrinos i.e. nuclear reactor neutrinos
 - E.g. for 10 MeV ν , the max nuclear recoil energy is 8.7 keV on Sodium and 1.6 keV on lodine

- Very high light output crystal
 - COSINE-100 measures 15 P.E. / keVee
- Relatively large nuclear recoil of Na
 - relevant for low energy neutrinos i.e. nuclear reactor neutrinos
 - \cdot E.g. for 10 MeV $\nu_{\rm r}$ the max nuclear recoil energy is 8.7 keV on Sodium and 1.6 keV on lodine
- Background under control and easily scalable
 - COSINE-100 shows 2.5 counts/day/kg/keV (internal origin) at 1 keV threshold.

- Very high light output crystal
 - COSINE-100 measures 15 P.E. / keVee
- Relatively large nuclear recoil of Na
 - relevant for low energy neutrinos i.e. nuclear reactor neutrinos
 - E.g. for 10 MeV ν , the max nuclear recoil energy is 8.7 keV on Sodium and 1.6 keV on lodine
- Background under control and easily scalable
 - COSINE-100 shows 2.5 counts/day/kg/keV (internal origin) at 1 keV threshold.

Natural Opportunities for $CE\nu NS$, Synergy with dark matter detection, and Possible new physics : However, 0.2 keVee threshold is required.

$$QF(E_{dep}) = \frac{E_{ee}}{E_{nr}} = \frac{E_{vis.}}{E_{dep.}}$$

RENO near

• Nal(Tl) crystals in a Liquid Scintillator bath Polyethylene Castle • Located at ~24 m from reactor core (Tendon) \cdot 10 m concrete overburden (x6 less muon flux) $F(\bar{\nu}_e) = 8.09 \times 10^{12} \ cm^{-2} \ sec^{-1}$ A-side) Lead(10-15cm)Lead Castle EL-11611 * (45) - 1.5 m Ground Level Tendon Gallery 13.5 m 4 m Card Contest ← ` Im Soil, Rock 3 m Concrete

NEON Data Collection and Operations

May 02, 2023
CARACTER STORE
May 02, 2023
May 02, 2023
May 02, 2023
May 02, 2023

Mar 03, 2023

Mar 03, 2023

NEON crystal light yields

NEON crystals show high light yields (size matching & simpler coupling)

NEON crystal light yields

Waveform Simulation and Validations

Waveform Simulation and Validations

- Waveform simulation is developed to characterize the keV~sub keV scintillation signals.
- Simulation generates raw waveforms as same as the real data

- Waveform simulation is developed to characterize the keV~sub keV scintillation signals.
- Simulation generates raw waveforms as same as the real data
- SPE parameters are tuned to match the real data

Waveform Simulation and Validations

Low Energy Spectrum

Event selection is done with a series of BDT output variables characterizing different types of PMT noises

With the current algorithms, a threshold of 0.6 keVee with 7 counts/day/kg/keVee is achieved after BDT event selections

Radon concentration variation by season

• Reactor OFF period occurred in WINTER. (Lower radon rate)

Radon rate higher in summer due to air circulation and emanation effect.

Background Understanding of Data

BSM Physics Analyses

BSM Physics Analyses

- Best ALP limits by NEON.
- Complete coverage for the Cosmological triangle
- Better limits for the Beam Dump experiments.

CEVNS Analysis

- •
- $CE\nu NS$ analysis uses Photoelectron(PE)-based approach.
 - Separate Selections for the Number of PEs (N_c)
 - Develop SPE-level discrimination parameters.
- scintillations (50% efficient & >90% rejections).

CEVNS Analysis

- Analysis Developed for each N_c using χ^2 method. •
- Developing the framework for the fitting algorithm using Multiple-hit data. •
- Unblinding the Single-hit data for the final best fit. •

$$\chi^2 = \sum_i \frac{\left(M_i^{\rm ON} - \tau M_i^{\rm OFF} - \sum_j \beta_j B_i^j - \sigma S_i\right)^2}{M_i^{\rm ON} + \tau^2 M_i^{\rm OFF}} +$$

Summary and Outlook

- $CE\nu NS$ for reactor $\bar{\nu}_{\rho}$ opens up several physics opportunities.
- NEON is poised to measure the $CE\nu NS$ process in an array of NaI(TI) crystals with high light yields of 24 PEs/keVee.
- The experiment is running stably since April 11, 2022, accumulating 523 (144) ON(OFF)-day data.
- Background modeling (~7 counts/day/kg/keV below 5 keV).
- In the meantime, we performed searches for Light Dark Matter and Axion-Like Particle and obtained the world best limits.
- For $CE\nu NS$ analysis, MLP method is used to select low-NPE scintillation signal more efficiently.
- The χ^2 fit method with the low-NPE sample has been on-going and unblinding is expected.

Background Understanding

- Background Modeling is actively on-going up to 3 MeV.
- Single hit low energy at 1~10 keV region : ~ 7 counts/day/kg/keV

• Composition : internal ~60%, cosmogenic~20%, external~20%, muon phosphor~1%

Expected Rate and Sensitivity for NEON

Sensitivity estimation shows that more than 3σ detection is possible assuming the 5-PE threshold is reached.