JSNS2 Experiment

Myoungyoul Pac

Laboratory for High Energy Physics, Dongshin University on the behalf of JSNS2 Collaboration

Neutrino Masses and Sterile Neutrino

B-decay and Pauli's Prediction

W. Pauli (1900-1958)

Neutrinos and the Standard Model

- The standard model requires a large number of input parameters. Because of this, the model itself was a very flexible theory.
- The theoretical basis has been developed based on experimental results in the Standard Model framework.

Neutrino mass ?

- The standard model has so far rarely rejected experimental evidences.
- But Super-K and SNO found evidence of neutrino oscillation in 1998.
 - ⇒ These results provided evidence that neutrinos have mass.
 - ⇒ Neutrinos interact with matter **not only via the weak interaction but also through gravity**.
- However, there is no way to give mass to a neutrino in the model.

Neutrino oscillation

$$P(\nu_e
ightarrow
u_\mu) = 2\sin \Delta m^2$$
 =

In the beginning of the Universe

And God said, "Let there be the Standard Model," and there was the Standard Model. But, God saw that the Standard Model was not good enough....

How many neutrino types in the Universe

- From Z-boson decay, it turns out that there are only three types
 of neutrinos that have weak
 interactions.
 - ⇒ Standard Model prediction

In the Standard Model

- particle's spin.
- neutrinos.

interaction.

Strong interactions and electromagnetic interactions are independent of the

• However, weak interactions depend on the spin direction of the massless

⇒ Only left-handed neutrino (right-handed antineutrino) affected by weak

How to explain neutrino mass in the Standard Model

- No mechanism works in the case of neutrino mass.
- Therefore, theoretically, there is a lot of room, and the following assumptions are possible.
 - ⇒ The product of a right-handed neutrino mass and a left-handed neutrino's is a constant : See-Saw mechanism
 - ⇒ Simple way to introduce a right-handed neutrino
 - $\overline{v} = v$, so called Majorana neutrino

Now are we happy?

are happy in the Standard Model?

Now we have a tool giving masses to neutrinos, even we do not know it really works, and three types of neutrinos having weak interaction. So we

Sterile neutrino?

- LSND reported an an excess of 87.9±22.4±6.0 anti-electron neutrino events (3.8σ) in 2001.
- Anomalies, which cannot be explained by three neutrino oscillations for about 20 years is below:

• Δm^2 (1.2 eV²) was significantly larges.

- It could not be explained by the three-neutring standard model framework.
 - Sterile neutrino : from "non-weak interaction"

Aguilar A et al. (LSND Collaboration) 2001 Phys. Rev. D 64 112007

- $\bar{\nu}_{\rho}$ appearance signals were detected via Inverse Beta Decay

$$\Delta m^2)_{best-fit} = (0.003, 1.2 \text{eV}^2).$$

$$\Delta m_{12} = \sim 10^{-5} \text{eV}^2$$

 $\Delta m_{23} = \sim 10^{-3} \text{eV}^2$

But

- Which experiment was wrong ?
- What's going on the neutrino sector?
- Many tests had been there after that.

Another type(s) of neutrino?

- We have known there are three types of neutrino.
- But these interact via weak interaction only!!
 - If neutrino having only mass and independent of weak interaction ?
 - ▷ Sterile neutrino
- Some experimental results indicate the possibility.

Experiment	ν source	Signal	Significance	
LSND	μ Decay-At-Rest	$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	3.8σ	
MiniBooNE	π Decay-At-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	3.4σ	
		$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	2.8σ	
		combined	3.8σ	
Ga/SAGE	e capture	$\nu_{\mu} \rightarrow \nu_{x}$	2.7σ	
Reactors	eta — decay	$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{x}}$	3.0σ	

Neutrino as Dark Matter

1 to 4 pJ/m^3 neutrinos

 $1 \text{ pJ} = 10^{-12} \text{ J}$ $\rho_{\rm crit}$ =1.68829 h^2 pJ/m³

- KATRIN shows the upper bound of standard neutrino mass as $\sum m_{\nu} < 0.17$ eV.
- Only explains small part of the total mass of the Universe.
- But if sterile neutrino have ~keV mass scale (high mass sterile neutrino), whole dark matter can be explained!!

JSNS² / JSNS²-II Experiment

Myoungyoul Pac

July 26 2024@CNU

16

Myoungyoul Pac

Indication of a sterile neutrino ($\Delta m^2 \sim 1 eV^2$)

Experiments (Neutrino source, signal, significance, energy, baseline)

- LSND (μ Decay-At-Rest, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, 3.8 σ , 40 MeV, 30 m, LINAC (600 us), 120 Hz)
- **MiniBooNE** (π Decay-In-Flight, $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$, 4.8 σ (combined), 800 MeV, 600 m)
- **BEST** (e capture, $\nu_e \rightarrow \nu_x$, ~4 σ , < 3 MeV, 10 m)
- **Reactors** (Beta decay, $\bar{\nu}_e \rightarrow \bar{\nu}_{\chi}$, significance varies, 1-8 MeV, 10 100 m) \bullet
- of sterile neutrinos.
- "Therefore, a completely independent test under the same conditions is necessary."

Myoungyoul Pac

• However, other experiments have produced results that contradict the existence

JSNS² / JSNS²-II Collaboration (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

JAEA KEK **Kitasato** Kyoto Osaka Tohoku Tsukuba

Chonnam National Jeonbuk National Dongshin GIST Kyungpook Kyung Hee Seoyeong Soongsil Sungkyunkwan Seoul National of sci and tech

BNL Florida Michigan Utah

Myoungyoul Pac

Sun Yat-sen

JSNS² collaboration (61 collaborators)

- 7 Japanese institutions (27 members)
- 10 Korean institutions (25 members)
- 4 US institutions (5 members) lacksquare
- 1 UK institution (1 member)
- 1 China Institution (3 members)

J-PARC Facility

Myoungyoul Pac

Low duty factor beam (short-pulses + low repetition rate) Gives an excellent signal to noise ratio

1 MW (design)

- 0.6-0.7 MW (2021)
- 0.7-0.8 MW (2022)
- 0.84 MW (2023) / 0.65 MW (2023 Dec)
- 0.88-0.95 MW (2024)

Beam power at RCS: 1 MW (2024)

 A part of the beam is passed to the main ring (for T2K or Hadron)

JSNS² detector (Nucl. Instrum. Methods A 1014 (2021) 165742)

Myoungyoul Pac

17 tons target, Gd-LS + 10% DIN 31 tons gamma-catcher and veto, LS 120, 10-inch PMTs

Commissioning (2020)

- Calibration
- Beam data with 25 us window
- Eur. Phys. J. C (2022) 82:331

Physics run (2021 - present)

- Eur. Phys. J. C (2024) 84:409
- More papers are under review and available on the arXiv also.

- (IBD) as the LSND

Two advantages: short-pulsed beam (100 ns \times 2, 25 Hz) and gadolinium(Gd)**loaded liquid scintillator**

• JSNS² uses the same neutrino source (μ), target (H), and detection principle

• Even if the excess is not due to the oscillation, JSNS² can catch this directly.

Operation

1st physics run

- 0.6 MW (2021/Jan Apr/5)
- 0.7 MW (2021/Apr/5 June/22)

2nd physics run

- 0.7 MW (2022/Jan/28 Apr/6)
- 0.8 MW (2022/Apr/7 Jun/6)

3rd physics run

• 0.84 MW (2023/Apr/15 - Jun/2)

4th physics run

- 0.65 MW (2023/Dec/7 Dec/25)
- 0.88 MW (2024/Feb/6 Apr/8)
- 0.95 MW (2024/Apr/8 -)

10¹⁸/h)

X

Delivered POT

 10^{20}

Х

POT

ntegrated

450

350

300

250

200

150

100 🗌

50 -

Myoungyoul Pac

Production and detection

If sterile neutrinos exist, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ oscillation occurs with 24m

Myoungyoul Pac

Expected energy spectrum and sensitivity $sin^22\theta=3.0\times10^{-3}$

Sterile Neutrino Search

Commissioning run (Eur. Phys. J. C (2022) 82:331)

• June/5-15, 2020

Evis /MeV

- Integrated POT: 8.9×10^{20}
- Beam trigger with 25 μs width

Observed correlated event candidates

¹⁰ • 59 ± 8 events / 8 M spills

Cosmic-induced fast neutrons are the dominant background

- Correlated background: 55.9 ± 4.3
- Pulse shape discrimination (PSD) would reject them.
- Two independent groups are working on it.

July 26 2024@CNU

27

Toward the sterile neutrino search (For the blind analysis)

- Energies define side-bands like a right plot.
- All side-bands should be understood before Opening the signal region
- The rates in the side-band regions will be Predicted by the control samples driven by data
- Now, side-band 4 data are opened
 - Cosmic fast neutrons and accidentals are the main backgrounds in side-band 4

Myoungyoul Pac

The first comparison between the observation vs expectation (Side-band 4, prompt 60-100 MeV)

Myoungyoul Pac

Pulse Shape Discrimination (PSD)

- Fast neutrons can mimic IBD signals from electron anti-neutrino (correlated background)
- PSD can separate the IBD signals and fast neutrons.
- 10% diisopropyInaphthalene (DIN -> EJ-309, 2000L) has been added to improve the PSD power.
- The goal is to remove 99% of fast neutrons.

Myoungyoul Pac

Likelihood method (arXiv:2404.03679)

- The DAQ of JSNS² can measure a waveform every 2ns (500MHz sampling)
- The likelihood judges that each event looks like "a neutron" or "an electron"

i<96*j*<248 $[P_{ij}(PH)]$, PH is the peak normalized pulse height of jth bin PMT bin

Myoungyoul Pac

July 26 2024@CNU

31

Accidental single rate of IBD prompt and delayed IBD prompt candidate Eur. Phys. J. C (2024) 84:409

Special calibration run using beam timing with 125 μs time window

Observed (at 0.75 MW of averaged beam power)

- Prompt single rate: $(2.20 \pm 0.09) \times 10^{-4}$ /spill
- Delayed single rate: $(1.80 \pm 0.01) \times 10^{-2}$ /spill Myoungyoul Pac

IBD delayed candidate

July 26 2024@CNU

32

Better understanding the neutrino beam (JSNS² TDR, arXiv:1705.08629,)

Myoungyoul Pac

- How to get the absolute $\bar{\nu}_{\mu}$ flux?
- Simulation may give a marginal number.
- μ DAR neutrino production by 3 GeV protons
- However, there are Ambiguities in pion production
 - No measurement data of 3 GeV protons to a mercury target is available
 - Uncertainty in pion production from mercury
 - Target geometrical modeling
- Different simulation packages may help
- Or we can estimate from the data

Better understanding the neutrino beam (JSNS² TDR, arXiv:1705.08629,)

- Simulated μ DAR neutrino production by 3 GeV protons
 - Two different packages (FLUKA vs Geant4)
- μ **DAR**: $\mu^+ \rightarrow e^+ + \bar{\nu}_e + \bar{\nu}_\mu$
- CNgs:
 - ${}^{12}C + \nu_e \rightarrow e^- + {}^{12}N_{g.s.}$ (prompt: electron)
 - ${}^{12}N_{g.s.} \rightarrow {}^{12}C + \nu_e + e^+$ (delayed: positron)
 - Lifetime: ~16 ms
 - Understand the neutrino flux from the data

Myoungyoul Pac

FLUKA hadron simulation package (central value)

	$ \pi^+ \to \mu^+ \to \bar{\nu_{\mu}} $	$\pi^- \rightarrow \mu^- \rightarrow$
π/p	6.49×10^{-1}	4.02×10^{-1}
μ/p	3.44×10^{-1}	3.20×10^{-3}
ν/p	$3.44 imes 10^{-1}$	7.66×10^{-7}
ν after $1\mu s$	2.52×10^{-1}	4.43×10^{-4}

Geant4, QGSP-BERT package (cross-check)

	$\pi^+ \to \mu^+ \to \bar{\nu_{\mu}}$	$\pi^- \to \mu^- \to$
π/p	5.41×10^{-1}	4.90×10^{-1}
μ/p	2.68×10^{-1}	3.90×10^{-3}
ν/p	2.68×10^{-1}	9.34×10^{-4}
ν after $1\mu s$	1.97×10^{-1}	5.41×10^{-4}

JSNS²-II : The second phase of the JSNS²

JSNS²-II (arXiv:2012.10807)

New far detector

- Fiducial 32 tonnes and 48 m location)
- Two detectors with two different baseline
- A solid conclusion of LSND anomaly
- Improve the sensitivity
- Especially in the low Δm^2 region

Myoungyoul Pac

New far detector

Almost identical to the near detector

- The detector is placed outside of the building
- 37 m³ Gd-LS for the neutrino target
- 150 m³ pure LS for the gamma-catcher and veto
- 228, 10-inch PMTs were installed
- The acrylic vessel was made in Taiwan and installed
- GdLS and LS were donated by Daya-Bay in 2021 and are ready to fill
- An LED calibration system and temperature sensors were installed

Myoungyoul Pac

Sensitivity for the JSNS²-II (Based on the simulation)

- Each background simulation was done based on the JSNS² data
- Covering LSND by 3 sigma •

Myoungyoul Pac

Construction schedule of the JSNS²-II

	2021				2022		
	1-3	4-6	7-9	10-12	1-3	4-6	7-
s.s.tank			bid	Constr	uction		
Acrylic Vessel						bid	Cor
PMTs							
		DC c	DC dismantle/ ship (190 PMTs)				
(Gd)LS	Dona	ation					
Filling							
Data taking							

Myoungyoul Pac

