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Where quantum computers are 
(potentially) useful

• Quantum optimization:  combinatorial problems at the LHC  
– Finance, physics, materials discovery, science 

• Quantum devices (qubits) as sensors:  detection of dark matter and neutrino decays  
– Dark matter detection, quantum magnetometry + electrometry, atomic clocks 

• Quantum simulation/Hamiltonian simulation 
– Physics, chemistry   

• Quantum machine learning 
– Classification, generative models, anomaly detection  

• Quantum cryptography and security  
– Quantum key distribution, post-quantum cryptography 

• Quantum linear algebra and numerical methods 
– HHL algorithms, eigenvalue problems 

• Quantum communication and networks  
– Entanglement and violation of Bell’s inequality  
– Teleportation, quantum internet  

• Quantum sampling   
– Supremacy tasks, random circuits 
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FIG. 1. (Upper Panel) Proposed theoretical physical model
systems (orange) with corresponding approaches (green) and
quantum algorithms (blue). For more information on the
identified areas of interest see Section IIIA. (Lower Panel)
Proposed experimental challenges (orange) with correspond-
ing approaches (green) and quantum algorithms (blue). For
more information on the identified areas of interest see
Section III B. Legend: VQE: Variational Eigensolver; var-
QITE: variational Imaginary Time evolition; Tortter Dy-
namics: Time evolution based on trotteried time propaga-
tion operator; TN: Tensor Networks; QTN: Quantum Ten-
sor Networks inspired from classical TN; varQTE: variational
Quantum Real Time evolution; QNN: Quantum Neural Net-
works; QAOA: Quantum Approximate Optimization Algo-
rithm; HHL Algorith: Quantum algorithm for linear systems
of equations (by Aram Harrow, Avinatan Hassidim, and Seth
Lloyd); QBM: Quantum Boltzman Machines; QCBM: Quan-
tum Circuit Born Machine; QGANs: Quantum Generative
Adversarial Networks. See Appendix B for an overview of a
selection of these methods.

II. IBM ROADMAP ON QUANTUM
COMPUTING

Bringing about useful quantum computing to the sci-
entific world, and in particular, to the HEP community,
is contingent on the development of quantum comput-
ing hardware and software that permits the execution of
quantum algorithms at a scale that is capable of produc-
ing insights and results not accessible by classical com-
puters. But more than only requiring a large-scale device,
one requires that the components are su!ciently reliable
and have coherence times as well as gate parameters of
high quality [51]. The IBM Quantum roadmap proposes
a list of stepping stones that progressively improve on the
necessary requirements. The first development roadmap
was previewed in 2020 [52] laying out a progression of
the then available 27 qubits Falcon devices to the Con-
dor chip with 1,121 qubits by the end of 2023. With the
release of the 433 qubit Osprey chip a the end of 2022 [53]
the roadmap has been extended [54]. The new roadmap
now lays out a path to the newly introduced Kookaburra
chip with 4,105 qubits that utilizes interconnected chip
designs with long-range couplers. Furthermore, the new
roadmap added new chip architectures, such as the Heron
chip with 133 qubits incorporating recent advances from
gate and qubit research.
The greatest adversary to the realization of large-scale

quantum computers is noise. The components of quan-
tum computers are considerably more sensitive to im-
perfections and external interactions than their classi-
cal counterparts, leading them to decohere and turn into
classical mixtures [55]. It is therefore almost universally
accepted that complex and high-depth quantum algo-
rithms such as Shor’s factoring algorithm [56], quantum
amplitude amplification [57, 58], phase estimation [59]
or the long-time simulation of quantum dynamics will
require quantum error correction. The design plans for
the progressively larger QC layouts are therefore aimed
at providing a path to the long-term goal of realizing
a fault-tolerant quantum computer. However, current
error-correcting codes, which could be used to realize
fault-tolerant quantum computing at a non-trivial scale,
require system sizes that exceed the available hardware
by several orders of magnitude [60, 61]. Building a fault-
tolerant computer, therefore, requires not only higher
quality and larger scale devices but also research in error
correcting codes. Recent advances in the theory of error
correction [62] provide us with reason to be optimistic
about future progress. However, if we only wait for the
realization of a fault-tolerant quantum computer to run
algorithms and do not actively explore the potential of
near-term devices, we will forgo a promising opportunity
to obtain a computational advantage in the near future.
We are observing remarkable progress in quantum

hardware. As the roadmap and the already completed
milestones indicate, we are both building larger devices
and can manufacture components with an order of mag-
nitude improvement in two-qubit gate fidelities [63]. A
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FIG. 1. (Upper Panel) Proposed theoretical physical model
systems (orange) with corresponding approaches (green) and
quantum algorithms (blue). For more information on the
identified areas of interest see Section IIIA. (Lower Panel)
Proposed experimental challenges (orange) with correspond-
ing approaches (green) and quantum algorithms (blue). For
more information on the identified areas of interest see
Section III B. Legend: VQE: Variational Eigensolver; var-
QITE: variational Imaginary Time evolition; Tortter Dy-
namics: Time evolution based on trotteried time propaga-
tion operator; TN: Tensor Networks; QTN: Quantum Ten-
sor Networks inspired from classical TN; varQTE: variational
Quantum Real Time evolution; QNN: Quantum Neural Net-
works; QAOA: Quantum Approximate Optimization Algo-
rithm; HHL Algorith: Quantum algorithm for linear systems
of equations (by Aram Harrow, Avinatan Hassidim, and Seth
Lloyd); QBM: Quantum Boltzman Machines; QCBM: Quan-
tum Circuit Born Machine; QGANs: Quantum Generative
Adversarial Networks. See Appendix B for an overview of a
selection of these methods.

II. IBM ROADMAP ON QUANTUM
COMPUTING

Bringing about useful quantum computing to the sci-
entific world, and in particular, to the HEP community,
is contingent on the development of quantum comput-
ing hardware and software that permits the execution of
quantum algorithms at a scale that is capable of produc-
ing insights and results not accessible by classical com-
puters. But more than only requiring a large-scale device,
one requires that the components are su!ciently reliable
and have coherence times as well as gate parameters of
high quality [51]. The IBM Quantum roadmap proposes
a list of stepping stones that progressively improve on the
necessary requirements. The first development roadmap
was previewed in 2020 [52] laying out a progression of
the then available 27 qubits Falcon devices to the Con-
dor chip with 1,121 qubits by the end of 2023. With the
release of the 433 qubit Osprey chip a the end of 2022 [53]
the roadmap has been extended [54]. The new roadmap
now lays out a path to the newly introduced Kookaburra
chip with 4,105 qubits that utilizes interconnected chip
designs with long-range couplers. Furthermore, the new
roadmap added new chip architectures, such as the Heron
chip with 133 qubits incorporating recent advances from
gate and qubit research.
The greatest adversary to the realization of large-scale

quantum computers is noise. The components of quan-
tum computers are considerably more sensitive to im-
perfections and external interactions than their classi-
cal counterparts, leading them to decohere and turn into
classical mixtures [55]. It is therefore almost universally
accepted that complex and high-depth quantum algo-
rithms such as Shor’s factoring algorithm [56], quantum
amplitude amplification [57, 58], phase estimation [59]
or the long-time simulation of quantum dynamics will
require quantum error correction. The design plans for
the progressively larger QC layouts are therefore aimed
at providing a path to the long-term goal of realizing
a fault-tolerant quantum computer. However, current
error-correcting codes, which could be used to realize
fault-tolerant quantum computing at a non-trivial scale,
require system sizes that exceed the available hardware
by several orders of magnitude [60, 61]. Building a fault-
tolerant computer, therefore, requires not only higher
quality and larger scale devices but also research in error
correcting codes. Recent advances in the theory of error
correction [62] provide us with reason to be optimistic
about future progress. However, if we only wait for the
realization of a fault-tolerant quantum computer to run
algorithms and do not actively explore the potential of
near-term devices, we will forgo a promising opportunity
to obtain a computational advantage in the near future.
We are observing remarkable progress in quantum

hardware. As the roadmap and the already completed
milestones indicate, we are both building larger devices
and can manufacture components with an order of mag-
nitude improvement in two-qubit gate fidelities [63]. A
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Neutrino fluxes from different sources as a function of the neutrino energy

1 GHz ∼ 4 μeV
10 GHz ∼ 40 μeV

7

Ion Species Transition Frequency (f→) ω→ (sec) m→
2 (eV) mion (amu) p0

→ with !CMB p0
→ with !U

171Yb+ [34, 35] 12.6 GHz (2.38 cm) 10 1 170.9 9.8 → 10↑11 0.0013
43Ca+ [36, 37] 3.2 GHz (9.4 cm) 50 1 42.9588 4.9 → 10↑8 0.66

TABLE I. Trapped ion qubit parameters for two ion species in the case of DM decays. The starred quantities are the reference
values adopted in our analysis.

time scales, including the longitudinal relaxation time,
transverse relaxation time, and inhomogeneous dephas-
ing time.

B. Cosmic neutrino background and transition
magnetic moment

The detection of the CωB remains one of the most com-
pelling challenges in modern physics, primarily due to its
extremely low-energy nature [38]. Despite significant the-
oretical and experimental e!orts, including attempts via
large-neutrino-mass scenarios [39, 40], the PTOLEMY
project [41], the dielectric response of boosted CωB-
plasmon scattering [42], and quantum-induced broaden-
ing [43], the direct detection of the CωB has not been
achieved yet.

As described previously, recent advancements in quan-
tum technologies, particularly in quantum sensing [44,
45], present a promising new avenue for addressing this
challenge. Superconducting transmon qubits, known for
their sensitivity to weak interactions, have shown poten-
tial in the detection of DM within a mass range of 10→6

to 10→4 eV [7, 9, 14, 15, 46, 47]. Intriguingly, this en-
ergy range overlaps with the estimated energy spectrum
of the CωB, which lies between 10→6 and 10→3 eV. Given
the exceptionally weak interaction strength of DM with
transmon qubits, it is plausible that similar techniques
could be adapted for probing the CωB through its inter-
actions with these devices.

Furthermore, quantum entanglement and other quan-
tum phenomena [10] o!er new opportunities for lever-
aging quantum devices in particle physics experiments.
While significant progress has been made in applying
quantum technologies for DM detection, direct CωB de-
tection with superconducting transmon qubits remains
unexplored. In this section, we attempt to address this
gap by examining the feasibility of detecting the CωB
with quantum devices, after a brief review on the neu-
trino transition magnetic moment.

Current experimental values for the squared mass dif-
ferences of three neutrinos are

!m2
21 = 7.59 → 10→5 eV2 (36)

!m2
32 = 2.32 → 10→3 eV2 , (37)

which leads to two non-equivalent orderings for the neu-
trino masses. The normal hierarchical (NH) spectrum

(m1 ↑ m2 < m3) and inverted hierarchical (IH) spec-
trum (m3 ↑ m1 < m2) lead to

m2 ↓
√

!m2
21 ↔ 8.6 → 10→3 eV (38)

m3 ↓
√

!m2
32 + !m2

21 ↔ 0.05 eV , (39)

for NH and

m1 ↓
√

|!m2
32 + !m2

21| ↔ 0.0492 eV , (40)

m2 ↓
√

|!m2
32| ↔ 0.05 eV , (41)

for IH, respectively [48]. Therefore, the heavier CωB neu-
trinos are non-relativistic, considering ECωB ↔ 10→6 ↗
10→4 eV.

Electromagnetic properties of neutrinos have been ex-
tensively studied [4, 5, 49–58]. In the simplest extension
of the SM including the right-handed neutrinos, the neu-
trino magnetic moment is given by

µω = 3eGF mω

8
↘

2ε2 ≃ 3 → 10→19µB

( mω

1 eV

)
(42)

where mω is the neutrino mass, e is the electromagnetic
coupling strength, GF is the Fermi constant, and µB =

e

2me
is the Bohr magneton with me being the electron

mass [51]. The neutrino magnetic moment interaction
[3, 59] is described by

µij
ω

2 ω̄iϑ
µωωj Fµω + h.c., (43)

where i, j = 1, 2, 3.
The SM prediction for the neutrino lifetime, based on

the above interaction, exceeds the age of the Universe by
many orders of magnitude, ϖSM = 7.1→1043

(mω

eV

)→5
sec-

onds; see also Refs. [60–62]. However, various new
physics scenarios beyond the SM can significantly en-
hance neutrino magnetic moments. Such modifications
have been considered in connection with experimental
anomalies, e.g., a possible correlation of solar neutri-
nos with solar activity [63]. See also Refs. [51, 60–62]
for more details on the radiative decay of neutrinos and
Refs. [3, 64, 65] for experimental bounds.

The number density of cosmic neutrinos is given by

nω = 3
4

ϱ(3)
ε2 T 3

ω Ne! ≃ 112 cm→3 , (44)



Transmon qubit = Capacitor + Josephson junction

P. Krantz et.al Applied Physics Reviews 6, 021318 (2019)

• Josephson nonlinearity breaks the harmonic spectrum, leading to 
discrete, unequal energy levels.


• A system of two lowest states can be considered as qubit with .ω01



Blais et al., RMP 93 025005 (2021)

• "By using a superconducting quantum interference device (SQUID) rather 
than a single junction, the frequency of the transmon qubit becomes flux 
tunable."

• Transmon qubits have discrete energy levels that can be controlled.


• One can scan the frequency  in the (c) SQUID-based system.ωq

ω ≃ 𝒪(1 − 10) GHz λ ≃ 𝒪(3 − 30)cm

Transmon qubit = Capacitor + Josephson junction



×
dark matter

• For typical device parameters,   with  


• At refrigerator temperatures  , a few-GHz transition satisfies .  

- Thus thermal excitation is strongly suppressed, and the qubit stays in the ground state.


• “Dark Matter" could penetrate the shield,  and induce a weak electric field that couples to qubit, 

,  here  is a kinetic-mixing parameter,  is the local DM density.


• If the DM-induced photons fall within this frequency band, they can resonantly excite the 

qubit - effectively turning dark-matter interactions into observable qubit errors. For a de 

Broglie wavelength in this range, 

ω ≃ 𝒪(1 − 10)GHz λ ≃ 𝒪(3 − 30)cm

𝒪(1 − 10)mK kBT ≪ ℏω

E(ext) = ϵ 2ρDM sin mXt ϵ ρDM

mDM ∼ 𝒪(4 − 40)μeV

ϵ
neutrinos



Dark Matter as an operator UDM

|0⟩ UDM

τ ≃ 𝒪(100)μs

• Signal: a weak classical field: wave-like DM, high-frequency gradational waves 

• The interaction between DM and qubits,  will 
drive transitions from  to . 

• The Goal to estimate the signal strength .   
1. Evolve: System evolves from  (ground state of free Hamiltonian) 

under  .   For a weak signal , 
 

2. Measure: Project  onto  and  . Probability of finding  : 

HDM = ϵ(cos α σX + sin α σY)
|0⟩ |1⟩

ϵ
|0⟩

HDM ϵ t ≪ 1
|ψ(0)⟩ = |0⟩ ⟶ |ψ(t)⟩ = U(t) |ψ(0)⟩ ≈ |0⟩ − ieiα ϵt |1⟩

|ψ(t)⟩ |0⟩ |1⟩ |1⟩
p1 = ⟨1 |ψ(t)⟩

2
= ϵ2 t2



Dark Matter as an operator UDM

• Qubits are exposed to microwaves from dark matters over the coherence time 

• One can repeat a cycle of (Reset    Measurement) as many as  during 

10 seconds.  
- Time for reset qubits   
- Time for measurement 

𝒪(100)μs
→ UDM → 𝒪(105)

∼ 𝒪(10)μs
≃ 𝒪(100)ns

Search strategy

• For fixed ω, repeat the measurement cycle (reset, wait, and
readout) as many time as possible

• Scan the qubit frequency ω

Time spent for each frequency
~ 10 sec

Reset to |g 
~ 20 ns

Readout
~ 100 ns

Time evolution (with U    )
τ ~ 100 μs

time

DM

N     ~ 10rep
5

time

#
 o

f 
si

g
n

a
l

ω

ω = mX
Wait until t = τ

gReset to

Readout

ψ e= : Signal of DM



• Two scenarios : 
1) Heavier "dark" particle  decays into lighter particle  and a photon , 

with an interaction Lagrangian  

2) Cosmic neutrino background , with transition via neutrino magnetic 

moment interaction, 

X2 X1 γ
μXμ

1 Xν
2 F̃μν

CνB
L ∋ (μij

ν /2) ν̄iσμννjFμν

• Photon from the transition process 
of a heavier state into a lighter state 
will couple to qubits.


• A conducting cavity with reflective 
inner walls confines photons.

X2

X2

X2

X1

X1

γ

qubits

conducting sphere

2508.09139

(Many thanks to Prof. Kyu Jung Bae and Prof. Takeo Moroi for useful discussion.)



Radiative Decays of Neutrinos and Dark 
Matter Particles

• Photon from a decay process is described by a plane-wave  
 

 with a photon energy .  

 
- Energy density of photons   with   

• Interaction between a photon from decay process and qubit,  
 

,  
 
so that the total Hamiltonian 
 

⃗E eff = Ēeff ⃗nE sin(Eγt) Eγ =
m2

X2
− m2

X1

2mX2

ργ = Eγnγ = ϵ0Ē2
eff nγ ∝ ΓX2

nX2

Hint = CVdĒ(eff) cos Θ sin(Eγt) ≡ 2η sin(Eγt)( ̂a + ̂a†)

H = ω |e⟩⟨e | + 2 η sin(Eγt) (|e⟩⟨g | + |g⟩⟨e |)
2508.09139



• If one tunes , then with rotating-wave approximation which 
neglects the rapid oscillation with averaging into 0, 

ω ≃ Eγ

i
d
dt (

ψg(t)
ψe(t)) ≃ ( 0 −iη

−iη 0 ) (
ψg(t)
ψe(t))

with initial condition of   and ψg(0) = 1 ψe(0) = 0

ψg(t) ≃ cos ηt

ψe(t) ≃ sin ηt

• Thus, a transition probability   from   
 

 within a coherent time

pg→e(t) |g⟩ → |e⟩

p* ≡ pg→e(τ) = |ψe(τ) |2 ≃ sin2(ητ) ≃ (ητ)2

• Signals:    

• Backgrounds 

– Uniform 0.1% readout error:  

– Thermal noise: , where 

Nsig = p* × Ntry

10−3 × Ntry

e−ω/T × Ntry T ∼ 30 mK
2508.09139



• Assuming a local dark matter density  and decay rate 
 ensuring that   remains stable over the age of the 

universe. 

ρDM = 0.45 GeV/cm3

Γ ≲ ΓU = 2.299 × 10−18 s−1 X2

• Scanning the frequency range from 1 
- 10 GHz with a quality factor 

, which sets the frequency 
resolution to  . 

• This corresponds to about  
resolvable frequency bins across the 
1-10GHz range 


• One year continuous scan  
( ) yields  of 
integration time per frequency bin, 
corresponding to   / 
bin

Q = 106

δf = f /Q

2.3 × 106

3.15 × 107s 14s

Ntry = 𝒪(105)

p* = 0.069

2508.09139
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
µUni

max
)2 → 48ε m2

2

( m2
”m2

)3
!U . (25)

Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV

m2

)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
eV

)
. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.

Veff = 1
nq = 1

τ = 100 μs



• Suppose we have N identical sensors. What is the maximum sensitivity?

Quantum Enhancement of the Signal Rate

|0⟩ ⟶ |0⟩ − iϵτ |1⟩ p = ϵ2τ2DM

|0⟩ ⟶ |0⟩ − iϵτ |1⟩ p = ϵ2τ2DM

|0⟩ ⟶ |0⟩ − iϵτ |1⟩ p = ϵ2τ2DM

ptotal = 1 − (1 − p)N ≈ Np = Nϵ2τ2

⋮
⋮

|ψ⟩ ≡ some entangled state

|ψ⟩ ⟶ |ψ⟩ + O(Nϵτ) |ψ⊥⟩DM

p ∼ N2ϵ2τ2

Without entanglement With entanglement

?

An example of such a 
state is the GHZ state. 

Classical 
- N independent system are prepared 

and separately detected   

Quantum 
- Highly correlated configurations are measured 

collectively with a single measurement that 
encompasses all the systems.   



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t f

|Ψ(tf)⟩ =
(
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time scales, including the longitudinal relaxation time,
transverse relaxation time, and inhomogeneous dephas-
ing time.

B. Cosmic neutrino background and transition
magnetic moment

The detection of the CωB remains one of the most com-
pelling challenges in modern physics, primarily due to its
extremely low-energy nature [38]. Despite significant the-
oretical and experimental e!orts, including attempts via
large-neutrino-mass scenarios [39, 40], the PTOLEMY
project [41], the dielectric response of boosted CωB-
plasmon scattering [42], and quantum-induced broaden-
ing [43], the direct detection of the CωB has not been
achieved yet.

As described previously, recent advancements in quan-
tum technologies, particularly in quantum sensing [44,
45], present a promising new avenue for addressing this
challenge. Superconducting transmon qubits, known for
their sensitivity to weak interactions, have shown poten-
tial in the detection of DM within a mass range of 10→6

to 10→4 eV [7, 9, 14, 15, 46, 47]. Intriguingly, this en-
ergy range overlaps with the estimated energy spectrum
of the CωB, which lies between 10→6 and 10→3 eV. Given
the exceptionally weak interaction strength of DM with
transmon qubits, it is plausible that similar techniques
could be adapted for probing the CωB through its inter-
actions with these devices.

Furthermore, quantum entanglement and other quan-
tum phenomena [10] o!er new opportunities for lever-
aging quantum devices in particle physics experiments.
While significant progress has been made in applying
quantum technologies for DM detection, direct CωB de-
tection with superconducting transmon qubits remains
unexplored. In this section, we attempt to address this
gap by examining the feasibility of detecting the CωB
with quantum devices, after a brief review on the neu-
trino transition magnetic moment.

Current experimental values for the squared mass dif-
ferences of three neutrinos are

!m2
21 = 7.59 → 10→5 eV2 (36)

!m2
32 = 2.32 → 10→3 eV2 , (37)

which leads to two non-equivalent orderings for the neu-
trino masses. The normal hierarchical (NH) spectrum

(m1 ↑ m2 < m3) and inverted hierarchical (IH) spec-
trum (m3 ↑ m1 < m2) lead to

m2 ↓
√

!m2
21 ↔ 8.6 → 10→3 eV (38)

m3 ↓
√

!m2
32 + !m2

21 ↔ 0.05 eV , (39)

for NH and

m1 ↓
√

|!m2
32 + !m2

21| ↔ 0.0492 eV , (40)

m2 ↓
√

|!m2
32| ↔ 0.05 eV , (41)

for IH, respectively [48]. Therefore, the heavier CωB neu-
trinos are non-relativistic, considering ECωB ↔ 10→6 ↗
10→4 eV.

Electromagnetic properties of neutrinos have been ex-
tensively studied [4, 5, 49–58]. In the simplest extension
of the SM including the right-handed neutrinos, the neu-
trino magnetic moment is given by

µω = 3eGF mω

8
↘

2ε2 ≃ 3 → 10→19µB

( mω

1 eV

)
(42)

where mω is the neutrino mass, e is the electromagnetic
coupling strength, GF is the Fermi constant, and µB =

e

2me
is the Bohr magneton with me being the electron

mass [51]. The neutrino magnetic moment interaction
[3, 59] is described by

µij
ω

2 ω̄iϑ
µωωj Fµω + h.c., (43)

where i, j = 1, 2, 3.
The SM prediction for the neutrino lifetime, based on

the above interaction, exceeds the age of the Universe by
many orders of magnitude, ϖSM = 7.1→1043

(mω

eV

)→5
sec-

onds; see also Refs. [60–62]. However, various new
physics scenarios beyond the SM can significantly en-
hance neutrino magnetic moments. Such modifications
have been considered in connection with experimental
anomalies, e.g., a possible correlation of solar neutri-
nos with solar activity [63]. See also Refs. [51, 60–62]
for more details on the radiative decay of neutrinos and
Refs. [3, 64, 65] for experimental bounds.

The number density of cosmic neutrinos is given by

nω = 3
4

ϱ(3)
ε2 T 3

ω Ne! ≃ 112 cm→3 , (44)
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anomalies, e.g., a possible correlation of solar neutri-
nos with solar activity [63]. See also Refs. [51, 60–62]
for more details on the radiative decay of neutrinos and
Refs. [3, 64, 65] for experimental bounds.

The number density of cosmic neutrinos is given by

nω = 3
4

ϱ(3)
ε2 T 3

ω Ne! ≃ 112 cm→3 , (44)

NH
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ECνB ∼ 10−6 − 10−4 eV

7

Ion Species Transition Frequency (f→) ω→ (sec) m→
2 (eV) mion (amu) p0

→ with !CMB p0
→ with !U

171Yb+ [34, 35] 12.6 GHz (2.38 cm) 10 1 170.9 9.8 → 10↑11 0.0013
43Ca+ [36, 37] 3.2 GHz (9.4 cm) 50 1 42.9588 4.9 → 10↑8 0.66

TABLE I. Trapped ion qubit parameters for two ion species in the case of DM decays. The starred quantities are the reference
values adopted in our analysis.

time scales, including the longitudinal relaxation time,
transverse relaxation time, and inhomogeneous dephas-
ing time.

B. Cosmic neutrino background and transition
magnetic moment

The detection of the CωB remains one of the most com-
pelling challenges in modern physics, primarily due to its
extremely low-energy nature [38]. Despite significant the-
oretical and experimental e!orts, including attempts via
large-neutrino-mass scenarios [39, 40], the PTOLEMY
project [41], the dielectric response of boosted CωB-
plasmon scattering [42], and quantum-induced broaden-
ing [43], the direct detection of the CωB has not been
achieved yet.

As described previously, recent advancements in quan-
tum technologies, particularly in quantum sensing [44,
45], present a promising new avenue for addressing this
challenge. Superconducting transmon qubits, known for
their sensitivity to weak interactions, have shown poten-
tial in the detection of DM within a mass range of 10→6

to 10→4 eV [7, 9, 14, 15, 46, 47]. Intriguingly, this en-
ergy range overlaps with the estimated energy spectrum
of the CωB, which lies between 10→6 and 10→3 eV. Given
the exceptionally weak interaction strength of DM with
transmon qubits, it is plausible that similar techniques
could be adapted for probing the CωB through its inter-
actions with these devices.

Furthermore, quantum entanglement and other quan-
tum phenomena [10] o!er new opportunities for lever-
aging quantum devices in particle physics experiments.
While significant progress has been made in applying
quantum technologies for DM detection, direct CωB de-
tection with superconducting transmon qubits remains
unexplored. In this section, we attempt to address this
gap by examining the feasibility of detecting the CωB
with quantum devices, after a brief review on the neu-
trino transition magnetic moment.

Current experimental values for the squared mass dif-
ferences of three neutrinos are

!m2
21 = 7.59 → 10→5 eV2 (36)

!m2
32 = 2.32 → 10→3 eV2 , (37)

which leads to two non-equivalent orderings for the neu-
trino masses. The normal hierarchical (NH) spectrum

(m1 ↑ m2 < m3) and inverted hierarchical (IH) spec-
trum (m3 ↑ m1 < m2) lead to

m2 ↓
√

!m2
21 ↔ 8.6 → 10→3 eV (38)

m3 ↓
√

!m2
32 + !m2

21 ↔ 0.05 eV , (39)

for NH and

m1 ↓
√

|!m2
32 + !m2

21| ↔ 0.0492 eV , (40)

m2 ↓
√

|!m2
32| ↔ 0.05 eV , (41)

for IH, respectively [48]. Therefore, the heavier CωB neu-
trinos are non-relativistic, considering ECωB ↔ 10→6 ↗
10→4 eV.

Electromagnetic properties of neutrinos have been ex-
tensively studied [4, 5, 49–58]. In the simplest extension
of the SM including the right-handed neutrinos, the neu-
trino magnetic moment is given by

µω = 3eGF mω

8
↘

2ε2 ≃ 3 → 10→19µB

( mω

1 eV

)
(42)

where mω is the neutrino mass, e is the electromagnetic
coupling strength, GF is the Fermi constant, and µB =

e

2me
is the Bohr magneton with me being the electron

mass [51]. The neutrino magnetic moment interaction
[3, 59] is described by

µij
ω

2 ω̄iϑ
µωωj Fµω + h.c., (43)

where i, j = 1, 2, 3.
The SM prediction for the neutrino lifetime, based on

the above interaction, exceeds the age of the Universe by
many orders of magnitude, ϖSM = 7.1→1043

(mω

eV

)→5
sec-

onds; see also Refs. [60–62]. However, various new
physics scenarios beyond the SM can significantly en-
hance neutrino magnetic moments. Such modifications
have been considered in connection with experimental
anomalies, e.g., a possible correlation of solar neutri-
nos with solar activity [63]. See also Refs. [51, 60–62]
for more details on the radiative decay of neutrinos and
Refs. [3, 64, 65] for experimental bounds.

The number density of cosmic neutrinos is given by

nω = 3
4

ϱ(3)
ε2 T 3

ω Ne! ≃ 112 cm→3 , (44)
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for each flavor with Tω = 1.95 K and Ne! = 3.046. ω(s) =∑→
n=1 1/ns is the Riemann zeta function. Following the

discussion in Section II, we obtain the e!ective electric

field for the neutrino magnetic moment,

Ē(e!) =

√
!ijT Ve! nω”m2

ij

2miε0
, (45)

where !ij = !(ϑi → ϑj + ϖ).
We find that the transition probability p↑ for a single

transmon qubit can be expressed as

p↑ ↑ p0
↑ ↓

(
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϱ

100 µs

)3 (
µ

10↓11 µB

)2 (
”m2

ij

10↓5 eV2

)4 (
Ve! nω

112 cm↓3

) (
0.05 eV

mi

)4

(46)

where the reference probability is p0
↑ = 2.1 ↓ 10↓27 and

f = ς

2φ
is related to neutrino mass parameters as follows:

f ↑ 24 GHz ↓
(

”m2
ij

10↓5 eV2

) (
0.05 eV

mi

)
. (47)

The sensitivity for the neutrino magnetic moment µ
is derived by comparing Nsig and Ndark. We show in
Fig. 4 the 5↼ discovery (dashed) and 2↼ exclusion (dot-
ted) using Eqs. (32) and (33) for the neutrino transi-
tion magnetic moment µ (in the µB unit) as a func-
tion of the mass of the decaying neutrino (mi in eV) for
”m2 = 7.59↓10↓5 eV2 (left) and ”m2 = 2.32↓10↓3 eV2

(right). We adopted a 14-second data collection for each
frequency as per the measurement protocol with a vary-
ing coherence time ϱ = 2φQ

ς
with Q ↔ 106 following

Ref. [7]. The backgrounds are calculated using the same
methodology described in the previous section. Current
quantum devices lack the sensitivity required to detect
the CϑB, so we consider a futuristic scenario with nq =
105 and Ve! = 106 ↓ 103. This configuration improves
sensitivity by a factor of 1/(nq

↗
Ve!) = 3.16↓10↓10. We

adopt nq = 105 as our benchmark, motivated by IBM’s
roadmap to build a 100,000-qubit quantum computer by
2033 through advances in error correction, modular de-
sign, and scalable engineering [66]. We also considered
Ve! = 106 ↓ 103, considering 1,000 units of 1 m3 cavity,
each hosting a nq = 105 qubit-system. Our results show
that the squared-mass di!erence of ”m2 ↘ 10↓5 eV2 may
be probed with the frequencies of 1 ≃ 10 GHz, while
”m2 ↘ 10↓3 eV2 requires much higher frequency.

Similarly, the transition probability p↑ for trapped ions
can be calculated as

p↑ = p0
↑ ↓

(
µ

10↓11µB

)2 (
Ve! nω

112 cm↓3

) (
”m2

10↓5 eV2

)4 (
m↑

i

mi

)4 ( ϱ

ϱ↑

)3 (
f↑

f

)
, (48)

where the resonant frequency is given by

f ↑ f↑ ↓
(

”m2
ij

10↓5 eV2

) (
m↑

i

mi

)
. (49)

Table II summarizes trapped ion qubit parameters for
two ion species, which show slightly higher transition
probability compared to the transmon case.

As in the DM case, one can reinterpret the DarQ exper-
iment results to constrain the neutrino transition mag-
netic moment. Imposing the condition Ē(e!) < EDarQ

max
yields a bound of µ < 334 µB . While this bound
from DarQ is much weaker than the current limit µ <

10↓11 µB [3, 59], it is notable as the first constraint de-
rived using a quantum device. Future improvements can
leverage larger e!ective volume Ve! and more qubits nq

since the sensitivity to µ scales as 1/(nq
↗

Ve!). For in-
stance, with Ve! = 1 m3 and nq = 100, the projected
bound would improve to µ ↭ 10↓3 µB .

IV. CONCLUSIONS AND DISCUSSION

In this work, we have discussed a novel approach to
probe the radiative decays of extremely weakly interact-
ing particles such as CϑB and DM, leveraging highly sen-
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√
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, (45)

where !ij = !(ϑi → ϑj + ϖ).
We find that the transition probability p↑ for a single

transmon qubit can be expressed as
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↑ ↓
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)2 (
C
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f

1 GHz
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ϱ

100 µs
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µ

10↓11 µB

)2 (
”m2

ij

10↓5 eV2
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0.05 eV

mi
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(46)

where the reference probability is p0
↑ = 2.1 ↓ 10↓27 and

f = ς

2φ
is related to neutrino mass parameters as follows:

f ↑ 24 GHz ↓
(

”m2
ij

10↓5 eV2

) (
0.05 eV

mi

)
. (47)

The sensitivity for the neutrino magnetic moment µ
is derived by comparing Nsig and Ndark. We show in
Fig. 4 the 5↼ discovery (dashed) and 2↼ exclusion (dot-
ted) using Eqs. (32) and (33) for the neutrino transi-
tion magnetic moment µ (in the µB unit) as a func-
tion of the mass of the decaying neutrino (mi in eV) for
”m2 = 7.59↓10↓5 eV2 (left) and ”m2 = 2.32↓10↓3 eV2

(right). We adopted a 14-second data collection for each
frequency as per the measurement protocol with a vary-
ing coherence time ϱ = 2φQ

ς
with Q ↔ 106 following

Ref. [7]. The backgrounds are calculated using the same
methodology described in the previous section. Current
quantum devices lack the sensitivity required to detect
the CϑB, so we consider a futuristic scenario with nq =
105 and Ve! = 106 ↓ 103. This configuration improves
sensitivity by a factor of 1/(nq

↗
Ve!) = 3.16↓10↓10. We

adopt nq = 105 as our benchmark, motivated by IBM’s
roadmap to build a 100,000-qubit quantum computer by
2033 through advances in error correction, modular de-
sign, and scalable engineering [66]. We also considered
Ve! = 106 ↓ 103, considering 1,000 units of 1 m3 cavity,
each hosting a nq = 105 qubit-system. Our results show
that the squared-mass di!erence of ”m2 ↘ 10↓5 eV2 may
be probed with the frequencies of 1 ≃ 10 GHz, while
”m2 ↘ 10↓3 eV2 requires much higher frequency.

Similarly, the transition probability p↑ for trapped ions
can be calculated as

p↑ = p0
↑ ↓
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µ

10↓11µB
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Ve! nω

112 cm↓3

) (
”m2

10↓5 eV2

)4 (
m↑

i

mi

)4 ( ϱ

ϱ↑

)3 (
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f

)
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where the resonant frequency is given by

f ↑ f↑ ↓
(
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10↓5 eV2

) (
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mi

)
. (49)

Table II summarizes trapped ion qubit parameters for
two ion species, which show slightly higher transition
probability compared to the transmon case.

As in the DM case, one can reinterpret the DarQ exper-
iment results to constrain the neutrino transition mag-
netic moment. Imposing the condition Ē(e!) < EDarQ

max
yields a bound of µ < 334 µB . While this bound
from DarQ is much weaker than the current limit µ <

10↓11 µB [3, 59], it is notable as the first constraint de-
rived using a quantum device. Future improvements can
leverage larger e!ective volume Ve! and more qubits nq

since the sensitivity to µ scales as 1/(nq
↗

Ve!). For in-
stance, with Ve! = 1 m3 and nq = 100, the projected
bound would improve to µ ↭ 10↓3 µB .
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probe the radiative decays of extremely weakly interact-
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for each flavor with Tω = 1.95 K and Ne! = 3.046. ω(s) =∑→
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field for the neutrino magnetic moment,

Ē(e!) =

√
!ijT Ve! nω”m2

ij

2miε0
, (45)

where !ij = !(ϑi → ϑj + ϖ).
We find that the transition probability p↑ for a single
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where the reference probability is p0
↑ = 2.1 ↓ 10↓27 and

f = ς

2φ
is related to neutrino mass parameters as follows:
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) (
0.05 eV

mi

)
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The sensitivity for the neutrino magnetic moment µ
is derived by comparing Nsig and Ndark. We show in
Fig. 4 the 5↼ discovery (dashed) and 2↼ exclusion (dot-
ted) using Eqs. (32) and (33) for the neutrino transi-
tion magnetic moment µ (in the µB unit) as a func-
tion of the mass of the decaying neutrino (mi in eV) for
”m2 = 7.59↓10↓5 eV2 (left) and ”m2 = 2.32↓10↓3 eV2

(right). We adopted a 14-second data collection for each
frequency as per the measurement protocol with a vary-
ing coherence time ϱ = 2φQ

ς
with Q ↔ 106 following

Ref. [7]. The backgrounds are calculated using the same
methodology described in the previous section. Current
quantum devices lack the sensitivity required to detect
the CϑB, so we consider a futuristic scenario with nq =
105 and Ve! = 106 ↓ 103. This configuration improves
sensitivity by a factor of 1/(nq

↗
Ve!) = 3.16↓10↓10. We

adopt nq = 105 as our benchmark, motivated by IBM’s
roadmap to build a 100,000-qubit quantum computer by
2033 through advances in error correction, modular de-
sign, and scalable engineering [66]. We also considered
Ve! = 106 ↓ 103, considering 1,000 units of 1 m3 cavity,
each hosting a nq = 105 qubit-system. Our results show
that the squared-mass di!erence of ”m2 ↘ 10↓5 eV2 may
be probed with the frequencies of 1 ≃ 10 GHz, while
”m2 ↘ 10↓3 eV2 requires much higher frequency.

Similarly, the transition probability p↑ for trapped ions
can be calculated as
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where the resonant frequency is given by
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Table II summarizes trapped ion qubit parameters for
two ion species, which show slightly higher transition
probability compared to the transmon case.

As in the DM case, one can reinterpret the DarQ exper-
iment results to constrain the neutrino transition mag-
netic moment. Imposing the condition Ē(e!) < EDarQ

max
yields a bound of µ < 334 µB . While this bound
from DarQ is much weaker than the current limit µ <

10↓11 µB [3, 59], it is notable as the first constraint de-
rived using a quantum device. Future improvements can
leverage larger e!ective volume Ve! and more qubits nq

since the sensitivity to µ scales as 1/(nq
↗

Ve!). For in-
stance, with Ve! = 1 m3 and nq = 100, the projected
bound would improve to µ ↭ 10↓3 µB .
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field for the neutrino magnetic moment,
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√
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, (45)

where !ij = !(ϑi → ϑj + ϖ).
We find that the transition probability p↑ for a single
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where the reference probability is p0
↑ = 2.1 ↓ 10↓27 and

f = ς

2φ
is related to neutrino mass parameters as follows:

f ↑ 24 GHz ↓
(

”m2
ij
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) (
0.05 eV

mi

)
. (47)

The sensitivity for the neutrino magnetic moment µ
is derived by comparing Nsig and Ndark. We show in
Fig. 4 the 5↼ discovery (dashed) and 2↼ exclusion (dot-
ted) using Eqs. (32) and (33) for the neutrino transi-
tion magnetic moment µ (in the µB unit) as a func-
tion of the mass of the decaying neutrino (mi in eV) for
”m2 = 7.59↓10↓5 eV2 (left) and ”m2 = 2.32↓10↓3 eV2

(right). We adopted a 14-second data collection for each
frequency as per the measurement protocol with a vary-
ing coherence time ϱ = 2φQ

ς
with Q ↔ 106 following

Ref. [7]. The backgrounds are calculated using the same
methodology described in the previous section. Current
quantum devices lack the sensitivity required to detect
the CϑB, so we consider a futuristic scenario with nq =
105 and Ve! = 106 ↓ 103. This configuration improves
sensitivity by a factor of 1/(nq

↗
Ve!) = 3.16↓10↓10. We

adopt nq = 105 as our benchmark, motivated by IBM’s
roadmap to build a 100,000-qubit quantum computer by
2033 through advances in error correction, modular de-
sign, and scalable engineering [66]. We also considered
Ve! = 106 ↓ 103, considering 1,000 units of 1 m3 cavity,
each hosting a nq = 105 qubit-system. Our results show
that the squared-mass di!erence of ”m2 ↘ 10↓5 eV2 may
be probed with the frequencies of 1 ≃ 10 GHz, while
”m2 ↘ 10↓3 eV2 requires much higher frequency.

Similarly, the transition probability p↑ for trapped ions
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↑ ↓
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where the resonant frequency is given by
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Table II summarizes trapped ion qubit parameters for
two ion species, which show slightly higher transition
probability compared to the transmon case.

As in the DM case, one can reinterpret the DarQ exper-
iment results to constrain the neutrino transition mag-
netic moment. Imposing the condition Ē(e!) < EDarQ

max
yields a bound of µ < 334 µB . While this bound
from DarQ is much weaker than the current limit µ <

10↓11 µB [3, 59], it is notable as the first constraint de-
rived using a quantum device. Future improvements can
leverage larger e!ective volume Ve! and more qubits nq

since the sensitivity to µ scales as 1/(nq
↗

Ve!). For in-
stance, with Ve! = 1 m3 and nq = 100, the projected
bound would improve to µ ↭ 10↓3 µB .

IV. CONCLUSIONS AND DISCUSSION

In this work, we have discussed a novel approach to
probe the radiative decays of extremely weakly interact-
ing particles such as CϑB and DM, leveraging highly sen-
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Γij = Γ(νi → νj + γ) =
μij

8πmi

Δm2
ij

2mi

μB =
eℏ
2me



• Polished aluminum and copper typically 
reflect 98–99% of incident radiation  

• In this configuration, DM or neutrinos 
can freely enter the cavity, but once 
they decay into photons, the photons 
are confined. Eventually, these trapped 
photons will interact with the quantum 
device. 

• This setup significantly enhances the chance of detecting a signal by 
effectively increasing the detection volume and thereby the expected as 
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Δm221 = 7.59 × 10−5 eV2

nq = 105
T = 30 mK
Veff = 106 × 103

mi (eV)

μ
/μ B

f (GHz)

Δm232 = 2.32 × 10−3 eV2

nq = 105
T = 30 mK
Veff = 106 × 103

mi (eV)

μ
/μ B

f (GHz)

FIG. 4. The 5ω discovery (red, solid) and 2ω exclusion (blue, dashed) significance of the transmon qubit device for the neutrino
transition magnetic moment µ (in the µB unit) as a function of mi for !m2

21 = 7.59→10→5 eV2 (left) and !m2
32 = 2.32→10→3 eV2

(right), adopting nq = 105 and Ve! = 106 → 103. We adopted a 14-second data collection for each frequency as per the
measurement protocol with a varying coherence time ε = 2ϑQ/ϖ with Q ↑ 106 following Ref. [7]. We use a temperature of
T = 30 mK to estimate the dark-count background.

Ion Species Transition Frequency (f↑) ε↑ (sec) m↑
i (eV) mion (amu) p0

↑

171Yb+ [34, 35] 12.6 GHz (2.38 cm) 10 0.09595 170.9 8.59 → 10→26

43Ca+ [36, 37] 3.2 GHz (9.4 cm) 50 0.3778 42.9588 7.0 → 10→25

TABLE II. The same as Table I but for the neutrino decays.

sitive quantum devices. We have focused on two of the
leading platforms: superconducting transmon qubits and
trapped ion systems. By modeling the e!ective electric
fields induced by decay photons, we have evaluated the
response of these quantum sensors across two relevant
particle physics scenarios.

Our results demonstrate that quantum devices can ef-
fectively explore new regions of parameter space previ-
ously inaccessible to traditional detectors. Specifically,
we find that radiative decays of DM particles can be
probed with current quantum technologies. In contrast,
probing neutrino magnetic moments beyond existing ex-
perimental bounds will require further advancements in
coherence time and scalability. For a roadmap toward
building large-scale quantum devices, we refer the read-
ers to Refs. [66–70].

Looking ahead, several directions o!er promising av-
enues for improvement. Enhancing coherence times—
particularly through novel superconducting cavity ar-
chitectures [71, 72] or advanced trapped ion systems
[73]—can substantially boost sensitivity, as the signal
strength scales favorably with the coherence time, i.e.,
p→ → ω3. Superconducting quantum memories currently
exhibit coherence times on the order of a few millisec-
onds, and extending beyond this limit has remained a

significant challenge. Reference [74] has demonstrated
a single-photon qubit encoded in a novel superconduct-
ing cavity, achieving a coherence time of 34 milliseconds.
Reference [75] has demonstrated qubits with coherence
times of approximately 1 microsecond at frequencies up
to 72 GHz, operating reliably at temperatures up to 250
millikelvin. While higher operating frequencies in super-
conducting transmon qubits o!er potential benefits such
as faster gate operations and more e"cient control, they
also present challenges. Primarily, higher frequencies ex-
acerbate decoherence due to increased sensitivity to en-
vironmental noise and quasiparticle e!ects, potentially
limiting coherence times. Furthermore, the development
and integration of hardware capable of supporting these
higher frequencies can be complex.

The development of multi-qubit entanglement proto-
cols and coherent interaction schemes amplifies detection
prospects while suppressing background noise. Further-
more, expanding the search to include additional inter-
actions, such as millicharged or anapole couplings, and
exploring sterile neutrino decay channels, may broaden
the scope of potential discoveries.

Although practical implementation remains challeng-
ing, continued progress in quantum hardware and con-
trol techniques may soon bring these ideas within exper-
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us consider the decay of the heavier species X2 into the
lighter species X1 and a photon:

X2 → X1 + ω, (1)

for which the photon energy is given by

Eω = m2
2 ↑ m2

1
2m2

= !m2

2m2
(2)

in the rest frame of X2. Here !m2 ↓ m2
2 ↑ m2

1 denotes
the squared-mass di!erence.

We assume that the particle X2 is non-relativistic and
either stable or has a very long lifetime, with a known
number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nω should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by

εω = Eωnω ↔ !m2

2m2
n2 . (3)

The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by

εω = ” T n2
!m2

2m2
, (4)

where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =

√
” T n2!m2

2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.

X2

X2

X2

X1

X1X1

γ

qubits

conducting sphere

FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.

98–99% of incident radiation [23–25]. In this configura-
tion, DM or neutrinos—which we will discuss as concrete
physics case studies—can freely enter the cavity, but once
they decay into photons, the photons are confined, i.e.,
unable to escape due to repeated reflections o! the mir-
rored walls. Eventually, these trapped photons will in-
teract with the quantum device. This setup significantly
enhances the chance of detecting a signal by e!ectively
increasing the detection volume and thereby the expected
number of decay photons that interact with the sensor.
We denote the volume of this cavity as Ve! , expressed
in the same units as the number density n2. Under this
setup, the X2 number density n2 is e!ectively replaced
with n2Ve! , e.g.,

n2 → n2

(
Ve!
cm3

)
, (7)

where n2 is assumed to be given in units of cm→3 and Ve!
is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].

(a) Transmon qubits: The e!ective electric field in-
duced by the photon from the X2 decay modifies the

Decay volume Entanglement

P* ≃ n2
q (ητ)2

Current reactor bounds are μ < 10−11 μB

Veff = 1 m3 = 106 cm3 nq = 105



Charting the course to 100,000 qubits

• All other quantum computing companies (D-wave, IonQ, Google etc) are also 
targeting Large-Scale, Fault-Tolerant Quantum Computers for next 10-20 years. 

• The future may arrive sooner than we expect. 
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We propose a novel method to significantly enhance the signal rate in qubit-based dark matter detection
experiments with the help of quantum interference. Various quantum sensors possess ideal properties for
detecting wavelike dark matter, and qubits, commonly employed in quantum computers, are excellent
candidates for dark matter detectors. We demonstrate that, by designing an appropriate quantum circuit to
manipulate the qubits, the signal rate scales proportionally to n2q, with nq being the number of sensor qubits,
rather than linearly with nq. Consequently, in the dark matter detection with a substantial number of sensor
qubits, a significant increase in the signal rate can be expected. We provide a specific example of a quantum
circuit that achieves this enhancement by coherently combining the phase evolution in each individual
qubit due to its interaction with dark matter. We also demonstrate that the circuit is fault tolerant to
dephasing noises, a critical quantum noise source in quantum computers. The enhancement mechanism
proposed here is applicable to various modalities for quantum computers, provided that the quantum
operations relevant to enhancing the dark matter signal can be applied to these devices.

DOI: 10.1103/PhysRevLett.133.021801

Introduction.—Quantum devices, which rely on funda-
mental quantum properties, play pivotal roles in modern
physics. The advancements and applications of these
quantum devices remain essential for further progress in
our field. Presently, one major motivation for the develop-
ment of quantum devices is to realize quantum computers,
where quantum bits (qubits) are utilized for quantum
computations. Additionally, the remarkable sensitivity to
external fields, particularly, electric and magnetic fields of
certain quantum devices including qubits, makes them
invaluable as high-precision quantum sensors.
Such quantum sensors can be utilized even for the

detection of fields which have never been observed before
(for review, see Ref. [1]). Particularly, recent studies have
pointed out the potential use of quantum sensors, such as
the superconducting qubit, trapped electrons, and nitrogen
vacancy centers, in detecting a specific type of dark matter
(DM), referred to as “wavelike DM” [2–5] (see also
Refs. [6–8]). Although various cosmological and astro-
physical observations strongly suggest the presence of DM
in our universe, its particle physics properties remain
largely unknown. Detection of DM is an essential endeavor
for comprehending the history of the universe and for

advancing our understanding of physics beyond the stan-
dard model.
In a recent publication [2], we have argued that the

transmon qubit [9] has ideal properties for the detection of a
certain type of wavelike DM, such as hidden-photon DM.
The wavelike DM may induce the excitation of the qubit,
providing a distinct signal of the DM. It has been shown
that the search for the hidden photon DMwith the transmon
qubit can probe the parameter regions that have remained
unexplored. Quantum sensors introduce innovative avenues
for the DM detection.
To further improve the detection sensitivity, experiments

with a larger number of qubits offer a clear advantage. With
multiple qubits, one can independently observe the exci-
tation of each qubit. In such a procedure, the signal rate
(i.e., the probability of observing at least one qubit
excitation) is roughly proportional to the number of qubits
(denoted as nq), assuming that the excitation probability of
each qubit is much smaller than n−1q . Such a scaling is
however drastically changed with the quantum-enhanced
parameter estimation technique [10–12]. With a proper set
of quantum operations, the signal rate can become propor-
tional to n2q, which provides a significant improvement of
the sensitivity in the DM detection.
The purpose of this Letter is to demonstrate the protocol

to achieve such quantum enhancement. The key idea is to
coherently sum up the phase evolution inscribed by the DM
in each qubit, using a quantum circuit with a set of single-
or two-bit gate operations. The entanglement between a
large number of qubits plays a vital role. We provide an
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Detecting Hidden Photon Dark Matter Using the Direct Excitation of Transmon Qubits
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We propose a novel dark matter detection method utilizing the excitation of superconducting transmon
qubits. Assuming the hidden photon dark matter of a mass of O!10Þ μeV, the classical wave-matter
oscillation induces an effective ac electric field via the small kinetic mixing with the ordinary photon. This
serves as a coherent drive field for a qubit when it is resonant, evolving it from the ground state towards the
first-excited state. We evaluate the rate of such evolution and observable excitations in the measurements,
as well as the search sensitivity to the hidden photon dark matter. For a selected mass, one can reach
ϵ ∼ 10−13–10−12 (where ϵ is the kinetic mixing parameter of the hidden photon) with a few tens of seconds
using a single standard transmon qubit. A simple extension to the frequency-tunable SQUID-based
transmon enables the mass scan to cover the range of 4–40 μeV (1–10 GHz) within a reasonable length of
run time. The scheme has great potential to extend the sensitivity towards various directions including
being incorporated into the cavity-based haloscope experiments or the currently available multibit noisy
intermediate-scale quantum (NISQ) computer machines.

DOI: 10.1103/PhysRevLett.131.211001

Introduction.—After the discovery of the anomalous
velocity behavior of the galaxies in the Coma cluster
reported by Zwicky [1,2], the hypothetical mass source—
dark matter (DM)—has been an outstanding mystery in
physics. Even though various strong indirect evidences
have been established through astrophysical and cosmo-
logical observations, the absence of the direct detection
leaves its particle-physics properties still largely unknown.
Numerous efforts have been implemented for the direct

DM detection. Experiments using nuclear (electron) recoil
processes provide excellent sensitivities to DM of a mass
around GeV to TeV (GeV to sub-GeV) scale (for a
dedicated review, see, e.g., Ref. [3]). The recoil technique
becomes less effective for DM lighter than ∼10 MeV due
to the recoil energy below the detection threshold that is
typically O!1Þ keV.
Different detection regimes are clearly needed for

exploring lighter DM. For DM weakly coupled to electro-
magnetic interaction (e.g., the hidden photon or axion),
haloscope experiments [4,5] using microwave cavities have
provided the leading sensitivity below O!1Þ meV [6–32].
Since such light DM can be treated as a classical

matter-wave due to its high number density within their
de Broglie wavelength, the DM-converted photons can be
accumulated in the matched resonant modes. This results
in a detectably sizable electric signal read out from an
antenna.
Alternatively, it has also been pointed out that the

excitation processes in condensed-matter systems can be
used to probe very light DM (see, e.g., Ref. [33]). Since the
energy gaps in condensed-matter systems are generally
much smaller than O!1Þ keV, the DM absorption may
exhibit distinctive excitation signatures. The goal of this
Letter is to extend this idea to the superconducting quantum
bits (qubits), known as artificial atoms, by exploiting their
favorable features: a strong coupling to electric fields,
tunable energy gaps, and the precise readout or control
functionality enabling easy detection and manipulation of
the excitation. We focus on the two-level system of the
lowest two energy states of the qubits, namely, the ground
state (jgi) and the first excited state (jei). The energy gap is
typically O!1–10Þ μeV, corresponding to the frequency of
O!1–10Þ GHz. The strong coupling allows the efficient
DM absorption of a mass corresponding to the energy gap,
driving the qubits from jgi to jei.
In this study, we target the oscillating hidden photon field

as the DM. While being a well-motivated DM candidate, it
is also a natural constituent arising from a large class of
string-inspired models in particle physics [34]. Through the
kinetic mixing with the photon, the hidden photon oscil-
lation yields a weak coherent effective electromagnetic
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the author(s) and the published article’s title, journal citation,
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Search for QCD axion dark matter with transmon
qubits and quantum circuit
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Abstract

We propose a direct axion dark matter (DM) search using superconducting trans-
mon qubits as quantum sensors. With an external magnetic field applied, axion DM
generates an oscillating electric field which causes the excitation of the qubit; such
an excitation can be regarded as a signal of the axion DM. We provide a theoretical
consideration of the excitation process of the qubits taking into account the e!ects of
the shielding cavity surrounding the qubits and estimate the signal rate for the axion
DM detection. We also discuss the enhancement of the DM signal by using cavity
resonance and entangled quantum sensors realized by a quantum circuit. Combining
these two e!ects, we can reach the parameter region suggested by QCD axion models.

∗Corresponding author
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Quantum entanglement of ions for light dark
matter detection
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Abstract

A detection scheme is explored for light dark matter, such as axion dark matter or
dark photon dark matter, using a Paul ion trap system. We first demonstrate that
a qubit, constructed from the ground and first excited states of vibrational modes
of ions in a Paul trap, can serve as an e!ective sensor for weak electric fields due
to its resonant excitation. As a consequence, a Paul ion trap allows us to search
for weak electric fields induced by light dark matter with masses around the neV
range. Furthermore, we illustrate that an entangled qubit system involving N

ions can enhance the excitation rate by a factor of N2. The sensitivities of the
Paul ion trap system to axion-photon coupling and gauge kinetic mixing can reach
previously unexplored parameter space.ar
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Eliminating Incoherent Noise: A Coherent Quantum Approach in Multi-Sensor Dark
Matter Detection
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We propose a novel dark matter detection scheme by leveraging quantum coherence across a
network of multiple quantum sensors. This method e!ectively eliminates incoherent background
noise, thereby significantly enhancing detection sensitivity. This is achieved by performing a series
of basis transformation operations, allowing the coherent signal to be expressed as a combination of
sensor population measurements without introducing background noise. We present a comprehensive
analytical analysis and complement it with practical numerical simulations. These demonstrations
reveal that signal strength is enhanced by the square of the number of sensors, while noise, primarily
due to operational infidelity rather than background fluctuations, increases only linearly with the
number of sensors. Our approach paves the way for next-generation dark matter searches that
optimally utilize an advanced network of sensors and quantum technologies.

I. INTRODUCTION

The endeavor to comprehend dark matter (DM) [1,
2] is pivotal in modern astrophysics and fundamental
physics. Although various observations validate its ex-
istence [3–5], its fundamental nature remains elusive.
Recently, attention has moved towards sub-eV mass
bosons [6, 7], including quantum chromodynamics ax-
ions [8–10], axion-like particles [11, 12], and dark pho-
tons [13–15] as potential DM candidates. These candi-
dates, predicted by theories involving higher-dimensional
space compactifications [16–20], exhibit a “wave na-
ture” [21, 22] due to their large de Broglie wavelength
and high local occupation number, allowing them to be
treated as coherently oscillating fields within their corre-
lation time and distance.

Electromagnetic interactions are crucial for detecting
DM fields [23, 24]. These interactions can generate de-
tectable currents within sensors under strong magnetic
fields for axions, or directly influence electromagnetic
fields for dark photons. Techniques such as resonant mi-
crowave cavities [24–27] and lumped-element circuits [28–
31] have been utilized to detect these subtle signals. How-
ever, these methods contend with significant challenges
from overwhelming thermal and quantum noise, which
restricts detection sensitivity by introducing environmen-
tal background noise and the Standard Quantum Limit
(SQL) [32] noise. Recently, innovative experiments have
begun employing novel quantum detection technologies
to surpass the SQL in DM detection. These innovations
include the use of squeezed states [33], mode entangle-
ment and state swapping techniques [34–37], and single
microwave photon detectors [38, 39], facilitated by quan-
tum non-demolition (QND) measurements [40, 41].

When a network or array of quantum sensors oper-
ates within the correlation time and distance of the DM
field, the detection sensitivity and scan rate can be signif-
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FIG. 1: Illustration of the protocol for coherence-based
detection of the DM signal, where UDM represents the

influence of the DM field, and U (2)
IJ

denotes the transfor-
mation of the coherence signal between a pair of sensors
into population numbers. Ultimately, we achieve a signal
strength enhanced by the square of the number of sen-
sors, with background fluctuations e!ectively canceled.

icantly improved [34, 42–45], incorporating a proper set
of quantum operations. In particular, an enhancement
of the signal rate by a factor of O(N2) can be achieved
with complex entangled states of N quantum sensors,
while the noise scales linearly with N . As each detector
coherently excites the DM signals, these signals can be
interpreted as a combination of sensor population mea-
surements, though they remain constrained by incoherent
background noise. Importantly, the quantum coherence
between di!erent sensors, which is entirely absent in un-
correlated noise, represents a valuable resource for DM
detection and merits further exploration in this area.
In this work, we propose a novel approach as depicted

in Fig. 1 that utilizes quantum coherence between DM
sensors as an additional degree of freedom, a feature
absent in classical systems. By integrating QND mea-
surements to eliminate quantum errors from state prepa-
ration and measurement (SPAM), we can, in principle,
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Quantum devices (qubits) as sensors

Talk by Bin Xu on Day 3



2

consider the following interaction between two fermions
(X1 and X2) and a photon (ω),1

µ

2 X̄2εµωX1 Fµω + h.c., (1)

where εµω = i[ωµ, ωω ]/2 and Fµω are the usual antisym-
metric dipole tensor and the photon field strength tensor,
respectively. The µ parameterizes the dimensionful cou-
pling of this interaction. The decay rate of the heavier
particle X2 of mass m2 into the lighter particle X1 of
mass m1 and photon ω is computed by

!(X2 → X1 + ω) = µ2

8ϑm3
2

(
m2

2 ↑ m2
1

)3
, (2)

for which the photon energy is given by

Eε = m2
2 ↑ m2

1
2m2

= ”m2

2m2
(3)

in the rest frame of X2. Here ”m2
↓ m2

2 ↑ m2
1 denotes

the squared-mass di!erence.
We assume that the particle X2 is non-relativistic and

either stable or has a very long lifetime, with a known
number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nε should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by

ϖε = Eεnε ↔
”m2

2m2
n2 . (4)

The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that ϖε is given by

ϖε = ! T n2
”m2

2m2
, (5)

where the decay rate of X2, !, is expressed in Eq. (2).
Since our goal is to detect such decay photon signals using
quantum devices, the time interval T should be less than
the coherence time ϱ of a given quantum system, i.e.,
T < ϱ .

The produced photon is well described by a plane-wave

ςE(e!) = Ē(e!)ςnE sin(Eεt) , (6)

where ςnE is the unit vector representing the direction of
the e!ective electric field ςE(e!). Given that the photon

1
In this paper, we consider a decay photon arising from the

fermion decay. However, the discussion is very generic, and can

apply to other scenarios as well—for example, to scalar parti-

cle decays or to other types of interactions such as anapole or

milliecharge couplings.

X2

X2

X2

X1

X1X1

γ

qubits

conducting sphere

FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.

energy density stored in the electric field is ϖε = φ0 ςE2,
we obtain

Ē(e!) =

√
! T n2”m2

2m2φ0
, (7)

where φ0 denotes the vacuum permittivity.2
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect
98–99% of incident radiation [22–24]. In this configura-
tion, DM or neutrinos—which we will discuss as concrete
physics case studies—can freely enter the cavity, but once
they decay into photons, the photons are confined, i.e.,
unable to escape due to repeated reflections o! the mir-
rored walls. Eventually, these trapped photons will in-
teract with the quantum device. This setup significantly
enhances the chance of detecting a signal by e!ectively
increasing the detection volume and thereby the expected
number of decay photons that interact with the sensor.
We denote the volume of this cavity as Ve! , expressed

2
In natural units adopted here, ω0 is dimensionless and set to

unity.
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Ultralight dark matter detection with trapped-ion interferometry
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We explore how recent advances in the manipulation of single-ion wave packets open new avenues
for detecting weak magnetic fields sourced by ultralight dark matter. A trapped ion in a “Schrödinger
cat” state can be prepared with its spin and motional degrees of freedom entangled and be used as
a matter-wave interferometer that is sensitive to the Aharonov-Bohm-like phase shift accumulated
by the ion over its trajectory. The result of the spin-motion entanglement is a parametrically-
enhanced sensitivity to weak magnetic fields as compared with an un-entangled ion in a trap.
Taking into account the relevant boundary conditions, we demonstrate that a single trapped ion
can probe unexplored regions of kinetically-mixed dark-photon dark matter parameter space in the
10→15 eV ↭ mA→ ↭ 10→14 eV mass window. We also show how such a table-top quantum device will
also serve as a complementary probe of axion-like particle dark matter in the same mass window.

Introduction. Determining the microphysical nature
of dark matter (DM) remains one of the outstanding
problems in particle physics and cosmology. The parame-
ter space of DM mass and coupling strengths to Standard
Model (SM) particles is vast. Covering all possible can-
didates therefore requires a similarly broad experimental
program.

Among the landscape of DM candidates, a possibil-
ity receiving increasing attention is that DM is that
of an ultra-light boson of mass mDM ↭ 1 eV. Exam-
ples include CP-even scalars such as dilatons [1–8], CP-
odd pseudoscalars such as axions and axion-like particles
(ALPs) [9–21], dark photons (DP) [22–35] or spin-2 mas-
sive states [36]. These models generically feature cou-
plings to SM photons. For example, an ALP a may cou-
ple to a pair of electromagnetic fields via the dimension-5
operator O → gaωωaFµε F̃µε , where gaωω is a dimension-
ful coupling. A dark photon A→

µ
may couple to SM pho-

tons via kinetic mixing, i.e., the Lagrangian may feature
the dimension-4 operator ωFµεF →µε , where ω ↑ 1 is the
dimensionless kinetic mixing parameter and F →µε is the
field tensor of the dark photon.

In light of their large occupation number per de Broglie
volume, these ultra-light dark matter (ULDM) candi-
dates can be described as classical waves, whose oscil-
lation frequency is largely determined by the DM mass.
Via the aforementioned interactions, ALP waves may
convert into electromagnetic radiation in the presence
of static electromagnetic fields, while “dark” electromag-
netic fields associated with kinetically-mixed dark pho-
tons may source electromagnetic fields.

Crucially, the electromagnetic fields sourced by these
candidates are small. To measure such small signatures

over a wide range of masses, a number of laboratory con-
cepts have been proposed. For recent reviews of the ex-
perimental landscape, see Refs. [37] and [38] and refer-
ences therein. Most searches for dark photon dark matter
take advantage of the fact that it naturally generates an
ω-suppressed electromagnetic field that can be measured
in the laboratory (see, e.g., Ref. [32] for a discussion of
these signals). Meanwhile, searches for axion or ALP
dark matter typically require an applied magnetic field
to trigger axion-photon conversion [39]. While the basic
principles underlying searches for these dark matter can-
didates are well-known, there has been significant recent
work leveraging new experimental techniques to extend
the sensitivity of detectors to a wider range of parameter
space [40–57].

In this Letter, we propose searching for kinetically-
mixed dark photon dark matter and ALPs with trapped-
ion interferometers. Our concept takes advantage of the
enormous improvement in the control and development
of small-scale ion traps, primarily for quantum comput-
ing, and makes use of the associated advances in ma-
nipulation of the ion’s quantum states [58–67]. Lever-
aging the entanglement between the ion’s spin and mo-
tional degrees of freedom, trapped-ion matter-wave inter-
ferometers using “Schrödinger cat” (also known as “cat”)
states [58], have been proposed to measure the Sagnac
e!ect [63]. Here we demonstrate that a trapped-ion
matter-wave interferometer using a cat state is sensitive
to the Aharonov-Bohm phase induced by weakly-coupled
dark matter fields. Considering the relevant boundary
conditions, we demonstrate that such a quantum sensor
can probe unexplored regions of ALP and DP parameter
space.
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Search for Dark Photon Dark Matter of a Mass around 36.1 µeV Using a

Frequency-tunable Cavity Controlled through a Coupled Superconducting Qubit

K. Nakazono,1, → S. Chen,2 H. Fukuda,1 Y. Iiyama,3 T. Inada,3 T. Moroi,1, 4 T. Nitta,4 A.
Noguchi,5, 6, 7 R. Sawada,3 S. Shirai,5, 6 T. Sichanugrist,1 K. Terashi,3 and K. Watanabe1

(DarQ Collaboration)
1Department of Physics, Graduate School of Science,
The University of Tokyo, Tokyo 113-0033, Japan

2Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
3International Center for Elementary Particle Physics (ICEPP),

The University of Tokyo, Tokyo 113-0033, Japan
4International Center for Quantum-field Measurement Systems for Studies of the Universeand Particles (QUP,
WPI), High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan

5RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Tokyo 351-0198, Japan
6Komaba Institute for Science (KIS), The University of Tokyo, Tokyo 153-8902, Japan

7Inamori Research Institute for Science (InaRIS), Kyoto 600-8411, Japan

We report the results of a search for dark photon dark matter using a cavity that employs a
transmon qubit as a frequency tuning component. The tuning mechanism utilizes the energy level
shift (Lamb shift) arising from the mode mixing between the qubit and the cavity mode. This
method o!ers several advantages: (i) it does not introduce physical thermal noise from the tuning
mechanism itself, (ii) it avoids electromagnetic leakage typically associated with cavity seams, and
(iii) its implementation is straightforward. We excluded the dark photon parameter region for
a dark photon mass around 36.1 µeV with a peak sensitivity of ω → 10→12 over the mass range
[36.0791, 36.1765] µeV, surpassing the existing cosmological bounds.

I. INTRODUCTION

Dark matter (DM) is a central subject in both particle
physics and astrophysics, yet its existence has not been
confirmed experimentally. One prominent class of DM
candidates is so-called wave-like DM, whose mass lies in
the sub-eV range or below [1, 2]. Among these, the dark
photon, a hypothetical massive vector field that kinet-
ically mixes with the ordinary photon, is a particularly
well-motivated and widely studied candidate. The search
for dark photon DM is the main focus of this letter.

Various experimental approaches have been developed
to detect the dark photon DM [3–6], and among them,
cavity haloscope experiments [3] currently o!er the high-
est sensitivity. In many cavity haloscope experiments,
sensitivity is maximized when the cavity resonance fre-
quency matches the oscillation frequency of the DM field
(which corresponds to the DM mass). Since the DM
mass is unknown, the cavity frequency must be scanned
to probe a wide mass range. The signal bandwidth, de-
termined by the DM velocity dispersion, is typically six
orders of magnitude smaller than the central frequency,
making frequency scanning one of the main challenges in
haloscope searches. Most leading haloscope experiments
perform this scan by physically adjusting the boundary
conditions of the cavity using metallic rods [7, 8], di-
electric rods [9], or other movable elements [10]. These
methods require complex mechanical structures, such as
stepper motors with cryogenic gears or piezoelectric ac-

↑ Correspondence to: nakazono@icepp.s.u-tokyo.ac.jp

tuators, operating at low temperatures. Such compo-
nents introduce considerable engineering complexity and
can generate frictional heat, which degrades sensitivity
and limits scan speed. Moreover, electromagnetic leak-
age through mechanical seams in the cavity can also be
a concern.

In this work, we present the first results from the
DarQ-Lamb experiment, conducted by the DarQ (Dark
matter search using Qubits) collaboration. In this study,
we introduce a method for tuning the cavity resonance
frequency, based on the Lamb shift [11] induced by the
interaction between cavity photons and a superconduct-
ing qubit. (A related concept was discussed in Ref.
[12].) The magnitude of the Lamb shift depends on the
qubit frequency and its coupling strength to the cav-
ity. By integrating a frequency-tunable qubit—realized
using a superconducting quantum interference device
(SQUID)—into the cavity, we achieve tunability through
purely electromagnetic means. Applying an external
magnetic field modifies the qubit frequency, which in sub-
sequently shifts the cavity resonance.

Compared to conventional mechanical tuning methods,
this technique o!ers several advantages:

• It does not generate much less heat, as the tuning
mechanism relies solely on electromagnetic interac-
tions.

• It eliminates the need for mechanical seams, reduc-
ing the risk of electromagnetic leakage.

• It avoids moving parts, simplifying the cryogenic
implementation.
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Directional search for light dark matter with quantum sensors

Hajime Fukuda→

Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
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Abstract

The presence of dark matter (DM) stands as one of the most compelling indications of new

physics in particle physics. Typically, the detection of wave-like DM involves quantum sensors,

such as qubits or cavities. The phase of the sensors is usually discarded as the value of the

phase itself is not physically meaningful. However, the di!erence of the phase between the sensors

contains the information of the velocity and direction of the DM wind. We propose a measurement

protocol to extract this information from the sensors using quantum states. Our method does not

require specific experimental setups and can be applied to any type of DM detector as long as the

data from the detectors can be taken quantum mechanically. We also show that our method does

not spoil the sensitivity of the DM detectors and is superior to the classical method based on the

correlations of the DM signals between the detectors.

→ hfukuda@hep-th.phys.s.u-tokyo.ac.jp
† ymatsuzaki872@g.chuo-u.ac.jp
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Quantum Sensing Radiative Decays of Neutrinos and Dark Matter Particles

Zhongtian Dong,1, → Doojin Kim,2, † Kyoungchul Kong,1, ‡ Myeonghun Park,3, 4, 5, § and Miguel A. Soto Alcaraz1, ¶

1Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
2Department of Physics, University of South Dakota, Vermillion, SD 57069, USA

3Center for Theoretical Physics of the Universe,
Institute for Basic Science, Daejeon 34126, South Korea

4Institute of Convergent Fundamental Studies, Seoultech, Seoul 01811, South Korea
5School of Natural Sciences, Seoultech, Seoul 01811, South Korea

We explore a novel strategy for detecting the radiative decay of very weakly interacting particles by
leveraging the extreme sensitivity of quantum devices, such as superconducting transmon qubits and
trapped ion systems, to faint electromagnetic signals. By modeling the e!ective electric field induced
by the decay photons, we evaluate the response of quantum sensors across two particle physics
scenarios: the cosmic neutrino background and two-component dark matter. We assess the discovery
potential of these devices and outline the parameter space accessible under current experimental
capabilities. Our analysis demonstrates that quantum sensors can probe radiative decays of dark
matter candidates using existing technology, while probing neutrino magnetic moments beyond
current limits will require scalable quantum architectures with enhanced coherence.

I. INTRODUCTION

The existence of dark matter (DM) is one of the most
compelling arguments for new physics beyond the stan-
dard model (SM). A myriad experimental searches, tai-
lored to di!erent mass ranges and interaction strengths,
have been performed for several decades and continue to
advance. Yet its true nature remains elusive, and a wide
range of theoretical scenarios have been proposed. In
particular, the possible mass scale of DM is remarkably
broad and poorly constrained, spanning from ultra-light
particles as light as 10↑24 eV to massive astrophysical
objects such as primordial black holes with masses ex-
ceeding millions of solar masses [1, 2].

Similarly, the Cosmic Neutrino Background (CωB) is
a fundamental prediction of Big Bang cosmology, repre-
senting relic neutrinos that decoupled from the primor-
dial plasma roughly one second after the Big Bang [3–5].
Yet, both DM and the CωB remain undetected by direct
means, largely due to their extremely weak interactions
with ordinary matter.

In recent years, numerous proposals have been put for-
ward to detect DM candidates using quantum devices,
including searches for hidden photon DM [6, 7], axions
[8], and light DM [9–12]. To enhance signal detection
and suppress noise, several algorithmic approaches have
also been explored [13, 14]. A potential opportunity for
the directional detection is also explored in Ref. [15].
On the experimental front, significant progress has been
made, such as the development of flux-tunable cavities
[16], transmon qubit modeling [17, 18], and scalable ar-
chitectures for dark photon searches [19]. For a broader

→
cdong@ku.edu

†
doojin.kim@usd.edu

‡
kckong@ku.edu

§
parc.seoultech@seoultech.ac.kr

¶
msoto1@ku.edu

overview of quantum sensors in high-energy physics, we
refer the reader to Ref. [20].

Along these lines, the DarQ collaboration recently
started taking data and presented first results, exclud-
ing the dark photon parameter region for a dark photon
mass around 36.1 µeV with a peak sensitivity of → 10↑12

for the kinetic mixing parameter, surpassing the existing
cosmological bounds [21].

While most existing studies focus on (bosonic) axion
and hidden photon DM, in this paper, we explore the
use of quantum devices to detect the radiative decays
of extremely weakly interacting particles. In particular,
we consider a two-component DM scenario as well as the
CωB as test cases. By modeling the e!ective electric field
produced by decay photons and their interaction with
quantum sensors, we evaluate their discovery potential
and map out the parameter space accessible with near-
future experimental capabilities. Our study suggests that
current quantum technologies can e!ectively probe ra-
diative DM decays, whereas pushing the sensitivity to
neutrino magnetic moments beyond present bounds will
require more scalable quantum systems with enhanced
coherence.

This paper is structured as follows. In Section II, we
outline the basic framework, building on Ref. [6], and
extend it to a broader range of physics scenarios. Section
III focuses on two representative cases: the DM decays
and CωB. Finally, Section IV provides a summary of our
findings and discusses future directions.

II. EVENT RATES

A. E!ective electric fields from particle decays

We consider physics scenarios where the electromag-
netic field induced by a photon from the particle decay
causes the transition of quantum devices from the ground
state to an excited state. As a concrete example, let us
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TABLE I. Each measurement parameter

variables explanations values uncertainties methods
mω→ frequency → 8.74GHz ↑ determined by each transmission measurement
ωDM energy density 0.45GeV/cm3 ↑ DM density cited from [32]
ε coupling coe!cient → 0.3 → 2% determined by each reflection measurement

Tsys system noise 7.9K 7.6% determined by y-factor measurement
Veff e”ective volume 3.14 cm3 0.6% ANSYS HFSS simulation
QL Loaded Quality factor → 5000 → 4% determined by each transmission measurement
ϑ attenuation factor 1.02 7.7% Savitzky-Golay software filtering
N measurement times 100 ↑ spectrum analyzer setting
b bandwidth 200Hz ↑ spectrum analyzer setting

frequency bin to determine whether any signal excess ex-
ceeded a 3ω threshold (see Eq. 8).

IV. RESULT

Figure 4 shows that there is no frequency bin having
power excess over 3ω. Therefore, we set an upper limit
on the kinetic mixing parameter.

FIG. 4. Signal to noise ratio (SNR) of this measurement.

The unknown polarization of dark photons must also
be considered in the interpretation of the experimental
results. Here, ε is the angle between the dark photon’s
polarization vector and the sensitive axis of the experi-
ment. The limit on the kinetic mixing parameter, ϑ, is
consequently adjusted by a factor related to

〈
cos2 ε

〉
, the

average squared projection of the dark photon polariza-
tion vector onto the electric field of the cavity mode of
interest:

ϑ →
ϑ√

↑cos2 ε↓
. (10)

Two benchmark scenarios were assumed for
〈
cos2 ε

〉

[23, 36]:

1. Random polarization: For dark photons with no
preferred polarization direction,

〈
cos2 ε

〉
= 1

3 .

2. Fixed polarization for the worst case:
〈
cos2 ε

〉
=

0.025. This factor is used to set 95% confidence
level exclusion limits when the dark photon has a
fixed but unknown polarization [36].

We calculated 95% confidence level upper limit of ϑ
based on Bayesian statistics. Those two upper limits are
shown in Fig. 5.

FIG. 5. The 95% exclusion limit of this experiment. Orange
region is in the random polarization case, and the blue region
case is in the worst case. The green region shows the exclusion
limit derived from cosmological constraints [23].

We concluded that this experiment excluded the region
whose lowest limit is ϑ > 1.12 ↔ 10→12 at a dark photon
mass of 36.1515 µeV assuming random dark photon po-
larization. The tuning range is [36.0791, 36.1765] µeV.
Upper boundary of exclusion limit.— The Lamb shift

is a quantum e!ect observable when the photon num-
ber within the cavity is su”ciently small. As the pho-
ton number increases, the system transitions towards an
unconfined state [37], and the Lamb shift consequently
becomes unobservable [31, 37]. This implies an upper
boundary on the power in the cavity for utilizing the
Lamb shift. We experimentally determined this upper
power limit to be approximately ↗82 dBm. Using Eq. 4,
this power corresponds to a kinetic mixing parameter of



Summary
• Particle physics has long operated at the forefront of 

technological innovation - for example, through the 
development of low-temperature superconducting systems 
used in the LHC.  

• Recently, several promising efforts have emerged to harness 
quantum technologies, including quantum simulation, quantum 
machine learning, quantum sensing, and quantum networking. 

•  In this talk, we showed that a gate-based quantum computer 
can be programmed to detect photons produced in the 
radiative decays of dark matter and neutrinos. 

• While the proposed approach can effectively explore viable 
parameter spaces in two-component dark matter models, 
detecting cosmic neutrinos remains a significant challenge 
with current quantum algorithms.
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Figure 1 Design of a 5-qubit superconducting quantum processing unit employed in this paper, showing 5
qubits (QB) connected by 4 tunable couplers (TC). Black, apart from explanatory text, indicates areas where
superconducting film is etched exposing the substrate. Flux lines are in red while drive lines are in blue

by a large capacitor in a way that Josephson energy exceeds capacitor energy by a factor
of few tens [12]. The transmon is prevalent qubit type in superconducting quantum com-
putation due to its stability against charge and flux noise, and simplicity of operation. In
our qubit circuit, sometimes referred to as a grounded transmon [13], the qubit capacitor
is formed by a thin metal film island separated from the coplanar ground plane by a gap
where metal has been etched and underling dielectric is exposed. In addition to the mu-
tual capacitance, the central island is connected to the ground via the SQUID consisting
of parallel-connected Josephson junctions.

The shape of the qubit charge island has six-fold rotational symmetry. Each sector fea-
tures a capacitor island. Each of the islands has its own size, which allows the coupling
capacitance to be individually tuned to achieve target coupling to the neighboring qubits,
qubit state readout resonator and extra shunt to the ground for precise targeting of to-
tal shunt capacitance. In between two coupling islands, there is a narrow strip of charge
island to reduce coupling between the neighboring couplers.

2.1.3 Qubit control
Each of the qubits is individually addressed by two control lines. Control lines are imple-
mented as coplanar waveguides.

The center conductor of the flux line is shorted to the ground in the vicinity of the qubit
SQUID creating an effective mutual inductance between the center conductor and the
SQUID loop. By applying electrical current through the flux line, magnetic flux created
through the SQUID loop creates a phase bias across the Josephson junctions, reducing the
effective Josephson energy of the SQUID and hence the qubit frequency. At the maximum
qubit frequency, the frequency is insensitive, to the first order, to external flux maximizing
the coherence time of the qubit and is referred to as a sweetspot. Qubit frequency changes
are used to find overall optimal operation frequencies, change dispersive coupling rates
to the other elements, and implement physical Z and CZ gates, more on two-qubit gates
below.

Discussion
• Quantum algorithms that could enhance beyond  

• What about other quantum devices 
– Transmon, trapped ion, Rydberg, what else? 
– Ge-based spin qubits 

• Testing on real quantum computers is being discussed. 
– IQM Spark 5 qubits 

• Other sources of photons 
– Hidden photon dark matter, axions, DM decays 
– High frequency gravitational wave detection  
–  
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X2 ⟶ X1 + γ + γ
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FIG. 2. Expected bounds on (m2, µ) by the DarQ
experiment at 95% CL [22], which leads to m2 <

4.15 → 10→5 eV for !m2

m2
= 2ωres assuming ” ↭ ”U =

2.299→10→18 s→1 and coherence time of DarQ, T = 1 µs.
Taking the CMB bound, ” ↭ ”CMB = 1.7 → 10→25 s→1,
we obtain m2 < 3.07 → 10→12 eV.
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FIG. 3. The 5ε discovery (red, solid) and 2ε exclusion (blue,
dashed) significance in the (m2, !m2) plane, assuming µ =
µUni

max, ϑ = 100 µs, nq = 1, Ve! = 1, and a 14-second data
collection for each frequency. The orange-solid line represents
the area excluded by the DarQ results. The light-shaded
region indicates the parameter space where ϖϑ > 1, requiring
the use of the full expression pg↑e ↑ sin2(ϖϑ).

hypothesis [33]:

ωdiscovery =

√

→2 ln
(

L(B|S + B)
L(S + B|S + B)

)
↑ 5, (32)

and the 2ω exclusion significance by excluding the signal
plus background hypothesis:

ωexclusion =

√

→2 ln
(

L(S + B|B)
L(B|B)

)
↑ 2, (33)

where S is the number of signal events (Eq. (19)),
B is the number of background events, and L is the
Poisson distribution, L(x|y) = xy

y! e→x. To compute
the false positive excitations, i.e., B, we use Eq. (20)
with a uniform 0.1% readout error for the temperature,
T = 30 mK. We find that results for T = 1 mK are simi-
lar to those for T = 30 mK. While varying m2 and !m2

over the parameter space—and thereby dynamically de-
termining the characteristic frequency3 by Eq. (27)—to
calculate these significances, we fix the remaining param-
eters as follows: Ve! = 1, C = 0.1 pF, d = 100 µm,
εDM = 0.45 GeV cm→3, ϑ = 100 µs, and cos2 ” = 1/3 as
in Ref. [7].

As mentioned earlier in the measurement protocol, an
experiment is conducted by fixing the characteristic fre-
quency to a specific value. Unlike in the significance

3 whether or not the resulting frequency value is feasible for a given
transmon qubit system.

calculation, a fixed frequency probes a specific set of
(m2, !m2) pairs, again as determined by Eq. (27). For
illustration, we display three representative frequency
choices: 1 GHz (green, solid), 5 GHz (green, dashed), and
10 GHz (green, dotted). For example, if a transmon qubit
system works between 1 GHz and 10 GHz, it essentially
explores the band defined by the solid and dotted green
lines. The DarQ exclusion bounds are shown in the (or-
ange, solid) line. The light-shaded region marks the pa-
rameter space where ϖϑ > 1, in which case the transition
probability must be evaluated using the full expression
pg↑e ↓ sin2(ϖϑ) as in Eq. (14). Two black dot-dashed
lines represent the boundary defined by ϖϑ = 1.

The transition probability p↓ for trapped ions in the
case of DM decay can be calculated as

p↓ = 1
8

(
eϑ Ē(e!)↔

mion ϱ

)2

(34)

= p0
↓

(
Ve! εDM

0.45 GeV cm→3

) ( ϑ

ϑ↓

)3 (
m↓

2
m2

)
, (35)

where the starred quantities indicate reference values.
Table I summarizes the trapped ion qubit parameters
for two ion species relevant to DM decays, including our
reference value choices. We have chosen m↓

2 = 1 eV
for illustration purposes, but one can choose any val-
ues for the mass of the decaying DM. Once it is fixed,
the mass-squared di!erence is given by !m2 = 2ϱ↓m2 =
4ςf↓m2. To determine ϑ↓ used in computing p0

↓ in Table
I, we adopt the shortest among the typical characteristic

DarQ

1 GHz

10 GHz

5 GHz
2σ

5σ
μ = μUni

max

τ = 100 μs

nq = 1

Veff = 1

14 seconds data 
collection for 

each frequency



Δm2 = 8.3 × 10−9 eV2

1 Γ
dΓ dE

γ
(

1 μe
V

)

Eγ (μeV)

m2 = 10−4 eV

m1 = 4.1 × 10−5 eV

Emax
γ = 41 μeV = 10 GHz

1

We consider e!ective interactions between neutrinos and two photons, both for Majorana and Dirac neutrinos. The
lowest order e!ective operator in LEFT arises at dimension-7 and takes the form [1, 2]

L = C
7
ij ω̄

c
i ωjFµωF

µω + C̃
7
ij ω̄

c
i ωjFµω F̃

µω (1)

If a right-handed chiral state ωR exists and neutrino is Dirac fermions ω̄RωL, then the above interaction is modified
ω̄
c
i ωj → ω̄iPLωj .
At the SMEFT level, such e!ective interaction arises at dim-8 for Dirac neutrinos known as Rayleigh operators:

(ω̄RiHLj)BµωB
µω and dim-9 for Majorana neutrinos

(
L̄
c
iH

c†
H

†
Lj

)
BµωB

µω . Similar operators can be written for the
weak isospin fields W i

µω .
Using naive dimensional analysis, and assuming the hierarchy mωj ↑ mωi , the neutrino decay width is estimated

as

”(ωi → ωjεε) ↓
m

7
ωi

8ϑ2
(C7

ij)
2
. (2)

Here C
7
ij is dimensionful parameter and has dimension GeV→3. Note that if the sterile ωR state is heavy, the decay

width is significantly enhanced.
The above analysis holds for UV completion such that the new physics scale (field) is integrated out to obtain the

e!ective operator of Eq. (1).

Alternatively, if a light scalar or pseudoscalar ϖ exists and mωi ↭ mε, then there might be two body decay. Consider
the following Lagrangian:

L ↔ Cϑϑ ϖF
µω
F̃µω + c

ij
ω (ωiPLωj)ϖ+ h.c., (3)

The decay width now becomes

”(ωi → ωjεε) ↗
m

3
ωi

32ϑ
(cijω )

2 BRε↑ϑϑ . (4)

Anil: One need to check all the relevant constraints. Here I am agnostic about UV completion, but in principle it
can be done. While doing UV completion one might have to check the dipole and mass contribution as well.

[1] Y. Liao, X.-D. Ma, and Q.-Y. Wang, JHEP 08, 162 (2020), arXiv:2005.08013 [hep-ph].

[2] S. Bansal, G. Paz, A. Petrov, M. Tammaro, and J. Zupan, JHEP 05, 142 (2023), arXiv:2210.05706 [hep-ph].

νi ⟶ νj + 2γ

X2 ⟶ X1 + γ + γ



f (GHz)

Δm2 = 8.3 × 10−9 eV2

m2 = 10−4 eV

m1 = 4.1 × 10−5 eV

Emax
γ = 41 μeV = 10 GHz

Nbackground

Nsignal

τ = 100 μs
T = 14 s for each frequency

X2 ⟶ X1 + γ + γ



f (GHz)

Δm2 = 8.3 × 10−9 eV2

m2 = 10−4 eV

m1 = 4.1 × 10−5 eV

Emax
γ = 41 μeV = 10 GHz

τ = 100 μs

T = 14 s for each frequency

p* ∼ ( τ
100 μs )

3

• Longer exposure will enhance the signal significance. 
• Do not need to scan entire frequency range (between 1 GHz and 10 GHz). 
• Signal could appear more than one place.

X2 ⟶ X1 + γ + γ





Sources of Electric Fields

X2

X1

γ

• |g⟩ ↔ |e⟩ transition occurs if DM field generates electric field 

– Hidden photon  

– Axions (if external magnetic field is given) 

– DM and neutrino decays 

2212.03884, transmon

2407.19755, transmon
2507.17825, trapped ion

2508.09139, transmon, trapped ion

2507.12860, Rydberg atom
2507.17825, trapped ion
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us consider the decay of the heavier species X2 into the
lighter species X1 and a photon:

X2 → X1 + ω, (1)

for which the photon energy is given by

Eω = m2
2 ↑ m2

1
2m2

= !m2

2m2
(2)

in the rest frame of X2. Here !m2 ↓ m2
2 ↑ m2

1 denotes
the squared-mass di!erence.

We assume that the particle X2 is non-relativistic and
either stable or has a very long lifetime, with a known
number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nω should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by

εω = Eωnω ↔ !m2

2m2
n2 . (3)

The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by

εω = ” T n2
!m2

2m2
, (4)

where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =

√
” T n2!m2

2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.

X2

X2

X2

X1

X1X1

γ

qubits

conducting sphere

FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.

98–99% of incident radiation [23–25]. In this configura-
tion, DM or neutrinos—which we will discuss as concrete
physics case studies—can freely enter the cavity, but once
they decay into photons, the photons are confined, i.e.,
unable to escape due to repeated reflections o! the mir-
rored walls. Eventually, these trapped photons will in-
teract with the quantum device. This setup significantly
enhances the chance of detecting a signal by e!ectively
increasing the detection volume and thereby the expected
number of decay photons that interact with the sensor.
We denote the volume of this cavity as Ve! , expressed
in the same units as the number density n2. Under this
setup, the X2 number density n2 is e!ectively replaced
with n2Ve! , e.g.,

n2 → n2

(
Ve!
cm3

)
, (7)

where n2 is assumed to be given in units of cm→3 and Ve!
is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].

(a) Transmon qubits: The e!ective electric field in-
duced by the photon from the X2 decay modifies the

2

us consider the decay of the heavier species X2 into the
lighter species X1 and a photon:

X2 → X1 + ω, (1)

for which the photon energy is given by

Eω = m2
2 ↑ m2

1
2m2

= !m2

2m2
(2)

in the rest frame of X2. Here !m2 ↓ m2
2 ↑ m2

1 denotes
the squared-mass di!erence.

We assume that the particle X2 is non-relativistic and
either stable or has a very long lifetime, with a known
number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nω should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by

εω = Eωnω ↔ !m2

2m2
n2 . (3)

The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by

εω = ” T n2
!m2

2m2
, (4)

where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =

√
” T n2!m2

2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.
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FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.
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is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].
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lifetime is long enough, we find that εω is given by
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where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =

√
” T n2!m2

2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.
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FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.
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unable to escape due to repeated reflections o! the mir-
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the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave
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where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain
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, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.
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FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.
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enhances the chance of detecting a signal by e!ectively
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is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].
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duced by the photon from the X2 decay modifies the
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number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nω should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by
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The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by
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, (4)

where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain
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2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.
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FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.
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be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
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The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by

εω = ” T n2
!m2

2m2
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where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =
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, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.

X2

X2

X2

X1

X1X1

γ

qubits

conducting sphere

FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.
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tion, DM or neutrinos—which we will discuss as concrete
physics case studies—can freely enter the cavity, but once
they decay into photons, the photons are confined, i.e.,
unable to escape due to repeated reflections o! the mir-
rored walls. Eventually, these trapped photons will in-
teract with the quantum device. This setup significantly
enhances the chance of detecting a signal by e!ectively
increasing the detection volume and thereby the expected
number of decay photons that interact with the sensor.
We denote the volume of this cavity as Ve! , expressed
in the same units as the number density n2. Under this
setup, the X2 number density n2 is e!ectively replaced
with n2Ve! , e.g.,
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(
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where n2 is assumed to be given in units of cm→3 and Ve!
is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].

(a) Transmon qubits: The e!ective electric field in-
duced by the photon from the X2 decay modifies the

3

Hamiltonian of the transmon qubit by adding the follow-
ing interaction term

Hint = CV dĒ(e!) cos ! sin(Eωt) (8)
= 2ω sin(Eωt)(â + â†) , (9)

where C is the capacitance, V is the voltage di!erence be-
tween the Josephson junction, d is the e!ective distance
between the two conductor plates, and the angle ! is the
angle between εnE and the normal vector of the conduc-
tor plate [7]. The â and â† are the annihilation and cre-
ation operators when approximating the non-linear po-
tential by a Josephson junction in the transmon qubit
system as a parabolic potential [7]. In this limit, the
initial Hamiltonian of the system is reduced to approxi-
mately H0 = ϑ|e→↑e| with the energy of the ground state
|g→ taken to be zero. Here ϑ is the energy di!erence be-
tween the ground state |g→ and the first excited state |e→
of the quantum system. The coe"cient ω for the trans-
mon qubits is defined as

ω ↓ 1
2
↔

2
d
↔

Cϑ cos !Ē(e!) . (10)

The resulting total Hamiltonian H = H0 + Hint is given
by

H = ϑ|e→↑e| + 2 ω sin(Eωt)
(
|e→↑g| + |g→↑e|

)
. (11)

This expression provides the phenomenological descrip-
tion of the interaction between the transmon qubits and
the decay photon.

The electric field Ē(e!) induced by the decay photon
results in the Rabi oscillation of the transmon qubit. Fol-
lowing the similar procedure described in Ref. [7], we as-
sume that the transmon qubit frequency ϑ is tuned to
the decay-photon energy, i.e., ϑ = Eω . In the limit of
the rotating-wave approximation, the time evolution is
reduced to

i
d

dt

(
ϖg(t)
ϖe(t)

)
↗

(
0 ↘iω

↘iω 0

) (
ϖg(t)
ϖe(t)

)
, (12)

where ϖg(t) and ϖe(t) represent the wave function cor-
responding to the ground state and first excited state,
respectively. Assuming that the qubits are initially at
the ground state, ϖg(0) = 1 and ϖe(0) = 0, we obtain
the following simple solution,

ϖg(t) ↗ cos ωt , ϖe(t) ↗ sin ωt . (13)

Hence, the transition probability from the ground state
to the excited state is given by

pg→e(t) = |ϖe(t)|2 ↗ sin2 ωt , (14)

within the coherence time, t < ϱ . Assuming ϱ ≃ ω↑1,
the transition probability within the coherence time can
be computed as

p↓ ↓ pg→e(ϱ) ↗ (ωϱ)2 . (15)

(b) Trapped ions: The interaction between trapped
ions and electromagnetic fields provides a fundamen-
tally di!erent sensing mechanism compared to trans-
mon qubits. In trapped ion systems, the electromag-
netic field from particle decays couples directly to the
ion’s mechanical motion through the Coulomb interac-
tion. The position-dependent coupling arises because the
ion’s charge distribution oscillates in the harmonic poten-
tial created by the trap, making it sensitive to external
electric fields. The free Hamiltonian of the trapped ion
acts as a harmonic oscillator. The interaction Hamilto-
nian Hint is given by

Hint = e εE(e!) · εx (16)

=
∑

n

eEn
(e!)↔

2mionwn
r

â†
ne↑iεn

r t + h.c., (17)

where εx is the three-dimensional position operator, E(e!)
is the induced electric field at the location of the ion, n
denotes the nth vibrational mode of the ion and mion
is the ion mass [15]. The ω parameter in the transition
probability expressed in Eq. (15) is replaced with

ω ↓ 1
2
↔

2
eĒ(e!)↔
mionwn

r

, (18)

for trapped ions. The decaying particle couples res-
onantly to the sensor when ϑn

r = ϑ↓ = Eω , where
ϑ↓ = 2ςf↓ is the characteristic frequency of the trapped
ion device and Eω is the energy of the induced photon in
the neutrino or DM decay. The specific allowed frequency
range and coherence time depend on the type of ion used
in the experiment. Typically, trapped ion systems have
a significantly longer coherence time compared to super-
conducting qubits, allowing longer integration times and
potentially higher sensitivity for weak and slowly vary-
ing signals. On the other hand, the coupling parameter
is typically smaller due to the large ion mass mion.

C. Sensitivity of quantum devices

The detection strategy relies on measuring small exci-
tation probabilities p↓ through a systematic counting ex-
periment using one or more quantum sensors (transmon
qubits or trapped ions) operating at a common resonant
frequency. The measurement protocol follows a cyclic
approach designed to accumulate statistical evidence for
particle decay signatures, based on the measurement pro-
tocol described in Ref. [7]:

(i) All quantum sensors are prepared in their ground
state at t = 0 and allowed to evolve freely un-
der the influence of potential decay-induced electro-
magnetic fields until the coherence time limit t = ϱ
is reached.

(ii) A quantum measurement is performed on all sen-
sors to determine their final states. This readout

3
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Cϑ cos !Ē(e!) . (10)

The resulting total Hamiltonian H = H0 + Hint is given
by

H = ϑ|e→↑e| + 2 ω sin(Eωt)
(
|e→↑g| + |g→↑e|

)
. (11)

This expression provides the phenomenological descrip-
tion of the interaction between the transmon qubits and
the decay photon.
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be computed as
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netic field from particle decays couples directly to the
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r = ϑ↓ = Eω , where
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the neutrino or DM decay. The specific allowed frequency
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in the experiment. Typically, trapped ion systems have
a significantly longer coherence time compared to super-
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ing signals. On the other hand, the coupling parameter
is typically smaller due to the large ion mass mion.
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The detection strategy relies on measuring small exci-
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tocol described in Ref. [7]:
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state at t = 0 and allowed to evolve freely un-
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C. Sensitivity of quantum devices

The detection strategy relies on measuring small exci-
tation probabilities p↓ through a systematic counting ex-
periment using one or more quantum sensors (transmon
qubits or trapped ions) operating at a common resonant
frequency. The measurement protocol follows a cyclic
approach designed to accumulate statistical evidence for
particle decay signatures, based on the measurement pro-
tocol described in Ref. [7]:

(i) All quantum sensors are prepared in their ground
state at t = 0 and allowed to evolve freely un-
der the influence of potential decay-induced electro-
magnetic fields until the coherence time limit t = ϱ
is reached.

(ii) A quantum measurement is performed on all sen-
sors to determine their final states. This readout
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Hamiltonian of the transmon qubit by adding the follow-
ing interaction term

Hint = CV dĒ(e!) cos ! sin(Eωt) (8)
= 2ω sin(Eωt)(â + â†) , (9)

where C is the capacitance, V is the voltage di!erence be-
tween the Josephson junction, d is the e!ective distance
between the two conductor plates, and the angle ! is the
angle between εnE and the normal vector of the conduc-
tor plate [7]. The â and â† are the annihilation and cre-
ation operators when approximating the non-linear po-
tential by a Josephson junction in the transmon qubit
system as a parabolic potential [7]. In this limit, the
initial Hamiltonian of the system is reduced to approxi-
mately H0 = ϑ|e→↑e| with the energy of the ground state
|g→ taken to be zero. Here ϑ is the energy di!erence be-
tween the ground state |g→ and the first excited state |e→
of the quantum system. The coe"cient ω for the trans-
mon qubits is defined as

ω ↓ 1
2
↔

2
d
↔

Cϑ cos !Ē(e!) . (10)

The resulting total Hamiltonian H = H0 + Hint is given
by

H = ϑ|e→↑e| + 2 ω sin(Eωt)
(
|e→↑g| + |g→↑e|

)
. (11)

This expression provides the phenomenological descrip-
tion of the interaction between the transmon qubits and
the decay photon.

The electric field Ē(e!) induced by the decay photon
results in the Rabi oscillation of the transmon qubit. Fol-
lowing the similar procedure described in Ref. [7], we as-
sume that the transmon qubit frequency ϑ is tuned to
the decay-photon energy, i.e., ϑ = Eω . In the limit of
the rotating-wave approximation, the time evolution is
reduced to

i
d

dt

(
ϖg(t)
ϖe(t)

)
↗

(
0 ↘iω

↘iω 0

) (
ϖg(t)
ϖe(t)

)
, (12)

where ϖg(t) and ϖe(t) represent the wave function cor-
responding to the ground state and first excited state,
respectively. Assuming that the qubits are initially at
the ground state, ϖg(0) = 1 and ϖe(0) = 0, we obtain
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(b) Trapped ions: The interaction between trapped
ions and electromagnetic fields provides a fundamen-
tally di!erent sensing mechanism compared to trans-
mon qubits. In trapped ion systems, the electromag-
netic field from particle decays couples directly to the
ion’s mechanical motion through the Coulomb interac-
tion. The position-dependent coupling arises because the
ion’s charge distribution oscillates in the harmonic poten-
tial created by the trap, making it sensitive to external
electric fields. The free Hamiltonian of the trapped ion
acts as a harmonic oscillator. The interaction Hamilto-
nian Hint is given by
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n

eEn
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2mionwn
r

â†
ne↑iεn

r t + h.c., (17)

where εx is the three-dimensional position operator, E(e!)
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is the ion mass [15]. The ω parameter in the transition
probability expressed in Eq. (15) is replaced with
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2
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eĒ(e!)↔
mionwn

r

, (18)

for trapped ions. The decaying particle couples res-
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process requires approximately 100 nanoseconds for
transmon qubits or microseconds to milliseconds
for trapped ions-durations that are negligible com-
pared to the coherence times involved.

(iii) For a given resonant frequency ω, the initialization-
evolution-readout sequence is repeated nrep times.
When measuring individual qubits, and requiring
at least one to transit from the ground to the ex-
cited state, the total number of measurements is
Ntry = nq → nrep, where nq represents the num-
ber of quantum sensors operated simultaneously
[7]. In contrast, if entanglement is used to boost
sensitivity, the measurement is performed on an an-
cilla qubit. In this case, the total number of mea-
surements reduces to Ntry = nrep [14]. Assuming
the decay-induced transitions occur independently
across sensors, the expected number of signal events
is

Nsig = p→ → Ntry. (19)

(iv) The entire measurement campaign is repeated
across di!erent sensor frequencies to probe various
particle mass ranges and decay channels, as di!er-
ent decay photon energies will resonate with sensors
tuned to corresponding frequencies. We consider
scanning the frequency range from 1 GHz to 10
GHz with a quality factor Q = 106, which sets the
frequency resolution to εf = f/Q. This results in
approximately 2.3 → 106 resolvable frequency bins
across the band. Running the experiment contin-
uously for one year (3.15 → 107 seconds) allows for
about 14 seconds of integration time per bin. We
consider two scenarios for the coherence time: a
fixed coherence time and the coherence time that is
given by ϑ = 2ϖQ

ω
with Q ↑ 106 following Ref. [7].

This protocol e!ectively converts the quantum mechani-
cal transition probability into a classical counting statis-
tics problem, where the sensitivity depends on accumu-
lating su"cient signal events above background to claim
detection or set exclusion limits.

In the case of multiple qubits, the transition probabil-
ity scales as p→ ↓ n2

q(ϱϑ)2 via entanglement schemes pro-
posed in Ref. [14]. The enhancement arises because the
quantum circuit allows new physics-induced signals from
individual qubits to add coherently rather than indepen-
dently, converting nq weak measurements into a single
strong measurement of the accumulated detections.

The false positive excitations (also known as dark
counts Ndark) are critical in the sensitivity calculation.
The primary source of dark counts is expected to be
qubit readout error, given that state-of-the-art single-
shot ground-state readout fidelity reaches approximately
99.9% when utilizing higher excited states [26]. Accord-
ingly, a uniform 0.1% readout error is assumed in the
subsequent discussion [7]. Thermal excitation is another

important source of dark counts, which can be estimated
as

Ndark = e↑ω/T Ntry , (20)

where T is the temperature of the transmon qubits or
trapped ions. We will consider T ↔ 30 mK, when pre-
senting our results. Other potential sources of false posi-
tive excitations are shielded from the qubit, thus consid-
ered as negligible.

III. SENSITIVITY OF QUANTUM DEVICES TO
PHYSICS MODELS

We are now ready to illustrate the search potential of
quantum devices for physics signals, beginning with the
radiatively decaying DM scenario, followed by the CςB
decay.

A. Dark matter decay

In this paper, we consider a two-component DM sys-
tem Xi (i = 1, 2) with X1 and X2 representing the lighter
and heavier DM candidates of masses m1 and m2, respec-
tively. One may consider various spin assignments for Xi.
In the case of (pseudo)scalar Xi, example interactions in-
clude a dimension-6 operator, φµX1φεX2F µε with F µε

being the usual field strength tensor for the SM pho-
ton. However, angular momentum conservation forbids
a scalar X2 from decaying into X1 and a photon. If a dif-
ferent spin is assigned to X1, such a decay is allowed—for
example, through a dark (pseudo)scalar portal-type op-
erator of the form X2FµεXµε

1 [27], where Xµε
1 is the field

strength of X1. If Xi is a fermion, m2 is required to be
greater than ↔ 100 eV in order to remain consistent with
the Pauli exclusion principle [28]. In this case, we find
that quantum devices with O(1)GHz operating frequency
are insensitive to the associated photon signal. However,
this mass bound may be avoided by introducing multiple
distinct DM components with quasi-degenerate masses
and no couplings to the SM particles [29].

In this subsection, for illustration, let us consider the
following interaction between massive spin-1 Xi and the
photon [30],

µXµ
1 Xε

2 F̃µε , (21)

where µ denotes the dimensionless coupling strength.
The decay rate of the heavier DM X2 into the lighter
one X1 and a photon is computed by

!(X2 ↗ X1 + ↼) = µ2

96ϖ

(m2
2 ↘ m2

1)3(m2
2 + m2

1)
m5

2m2
1

(22)

↑ µ2

48ϖ

(”m2)3

m5
2

, (23)

where the approximation in the second line is valid for
”m2 ≃ m2

1 ↭ m2
2.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
µUni

max
)2 → 48ε m2

2

( m2
”m2

)3
!U . (25)

Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV

m2

)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2
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= 2ϱDarQ

res :

µ ≃ µUni
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
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and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition
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where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
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= 8.74 GHz. This reso-
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m2 = !T ϱDarQ
res
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where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
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and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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where p0
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-
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nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify
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Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ
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2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
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and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
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.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
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where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
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2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify
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res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by
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and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
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)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition
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upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
µUni

max
)2 → 48ε m2

2

( m2
”m2

)3
!U . (25)

Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ
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2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by
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and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑
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.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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inant component and X1 as subdominant
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where p0
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-
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nance frequency corresponds to 36.1 µeV, and by Eq. (2)
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2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ
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where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
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allowed region is given by
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Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.

2508.09139

Bound on life time
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FIG. 2. Expected bounds on (m2, µ) by the DarQ
experiment at 95% CL [22], which leads to m2 <

4.15 → 10→5 eV for !m2

m2
= 2ωres assuming ” ↭ ”U =

2.299→10→18 s→1 and coherence time of DarQ, T = 1 µs.
Taking the CMB bound, ” ↭ ”CMB = 1.7 → 10→25 s→1,
we obtain m2 < 3.07 → 10→12 eV.
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FIG. 3. The 5ε discovery (red, solid) and 2ε exclusion (blue,
dashed) significance in the (m2, !m2) plane, assuming µ =
µUni

max, ϑ = 100 µs, nq = 1, Ve! = 1, and a 14-second data
collection for each frequency. The orange-solid line represents
the area excluded by the DarQ results. The light-shaded
region indicates the parameter space where ϖϑ > 1, requiring
the use of the full expression pg↑e ↑ sin2(ϖϑ).

hypothesis [33]:

ωdiscovery =

√

→2 ln
(

L(B|S + B)
L(S + B|S + B)

)
↑ 5, (32)

and the 2ω exclusion significance by excluding the signal
plus background hypothesis:

ωexclusion =

√

→2 ln
(

L(S + B|B)
L(B|B)

)
↑ 2, (33)

where S is the number of signal events (Eq. (19)),
B is the number of background events, and L is the
Poisson distribution, L(x|y) = xy

y! e→x. To compute
the false positive excitations, i.e., B, we use Eq. (20)
with a uniform 0.1% readout error for the temperature,
T = 30 mK. We find that results for T = 1 mK are simi-
lar to those for T = 30 mK. While varying m2 and !m2

over the parameter space—and thereby dynamically de-
termining the characteristic frequency3 by Eq. (27)—to
calculate these significances, we fix the remaining param-
eters as follows: Ve! = 1, C = 0.1 pF, d = 100 µm,
εDM = 0.45 GeV cm→3, ϑ = 100 µs, and cos2 ” = 1/3 as
in Ref. [7].

As mentioned earlier in the measurement protocol, an
experiment is conducted by fixing the characteristic fre-
quency to a specific value. Unlike in the significance

3 whether or not the resulting frequency value is feasible for a given
transmon qubit system.

calculation, a fixed frequency probes a specific set of
(m2, !m2) pairs, again as determined by Eq. (27). For
illustration, we display three representative frequency
choices: 1 GHz (green, solid), 5 GHz (green, dashed), and
10 GHz (green, dotted). For example, if a transmon qubit
system works between 1 GHz and 10 GHz, it essentially
explores the band defined by the solid and dotted green
lines. The DarQ exclusion bounds are shown in the (or-
ange, solid) line. The light-shaded region marks the pa-
rameter space where ϖϑ > 1, in which case the transition
probability must be evaluated using the full expression
pg↑e ↓ sin2(ϖϑ) as in Eq. (14). Two black dot-dashed
lines represent the boundary defined by ϖϑ = 1.

The transition probability p↓ for trapped ions in the
case of DM decay can be calculated as

p↓ = 1
8

(
eϑ Ē(e!)↔

mion ϱ

)2

(34)

= p0
↓

(
Ve! εDM

0.45 GeV cm→3

) ( ϑ

ϑ↓

)3 (
m↓

2
m2

)
, (35)

where the starred quantities indicate reference values.
Table I summarizes the trapped ion qubit parameters
for two ion species relevant to DM decays, including our
reference value choices. We have chosen m↓

2 = 1 eV
for illustration purposes, but one can choose any val-
ues for the mass of the decaying DM. Once it is fixed,
the mass-squared di!erence is given by !m2 = 2ϱ↓m2 =
4ςf↓m2. To determine ϑ↓ used in computing p0

↓ in Table
I, we adopt the shortest among the typical characteristic

DarQ

1 GHz

10 GHz

5 GHz
2σ

5σ
μ = μUni

max

τ = 100 μs

nq = 1

Veff = 1

14 seconds data 
collection for 

each frequency



Transmon qubit:  
Capacitor + Josephson junction (JJ)

• Transmon qubit has discrete energy levels 
– |0⟩ and |1⟩ can be used as |g⟩ and |e⟩, respectively 
– Transmon qubits are commonly used in today’s quantum 

computers
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Transmon qubits
• Transmon qubit couples to external electric field 

• Charge operator in the transmon limit:  

• |g⟩ ↔ |e⟩ transition could occur, if there is additional electric field! 
– This is not possible, since qubits are inside some cavity. 

CJ ≫ (2e)2

Transmon qubit couples to external electric field

→ Hint = QdE(ext)
Q

Q
Ed
(ext)Capacitor

Charge operator in the transmon limit: CJ " (2e)2

Q # C

2e
ω̇ #

√
Cω

2

(
|g↔〈e|+ |e↔〈g|

)

|g↔ ↔ |e↔ transition occurs if DM field generates electric field

• Hidden photon

• Axion (if external magnetic field exists)

• · · ·
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Ēeff ≤ EDarQmax

μUnimax = 7.78 × 10−10 [ m2
eV ]

for Γ ≲ ΓU = 2.299 × 10−18 s−1

10-8 10-7 10-6 10-5 10-4
10-19

10-18

10-17

10-16

10-15

10-14

10-13

m2 (eV)

μ

FIG. 2. Expected bounds on (m2, µ) by the DarQ
experiment at 95% CL [22], which leads to m2 <

4.15 → 10→5 eV for !m2

m2
= 2ωres assuming ” ↭ ”U =

2.299→10→18 s→1 and coherence time of DarQ, T = 1 µs.
Taking the CMB bound, ” ↭ ”CMB = 1.7 → 10→25 s→1,
we obtain m2 < 3.07 → 10→12 eV.
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FIG. 3. The 5ε discovery (red, solid) and 2ε exclusion (blue,
dashed) significance in the (m2, !m2) plane, assuming µ =
µUni

max, ϑ = 100 µs, nq = 1, Ve! = 1, and a 14-second data
collection for each frequency. The orange-solid line represents
the area excluded by the DarQ results. The light-shaded
region indicates the parameter space where ϖϑ > 1, requiring
the use of the full expression pg↑e ↑ sin2(ϖϑ).

hypothesis [33]:

ωdiscovery =

√

→2 ln
(

L(B|S + B)
L(S + B|S + B)

)
↑ 5, (32)

and the 2ω exclusion significance by excluding the signal
plus background hypothesis:

ωexclusion =

√

→2 ln
(

L(S + B|B)
L(B|B)

)
↑ 2, (33)

where S is the number of signal events (Eq. (19)),
B is the number of background events, and L is the
Poisson distribution, L(x|y) = xy

y! e→x. To compute
the false positive excitations, i.e., B, we use Eq. (20)
with a uniform 0.1% readout error for the temperature,
T = 30 mK. We find that results for T = 1 mK are simi-
lar to those for T = 30 mK. While varying m2 and !m2

over the parameter space—and thereby dynamically de-
termining the characteristic frequency3 by Eq. (27)—to
calculate these significances, we fix the remaining param-
eters as follows: Ve! = 1, C = 0.1 pF, d = 100 µm,
εDM = 0.45 GeV cm→3, ϑ = 100 µs, and cos2 ” = 1/3 as
in Ref. [7].

As mentioned earlier in the measurement protocol, an
experiment is conducted by fixing the characteristic fre-
quency to a specific value. Unlike in the significance

3 whether or not the resulting frequency value is feasible for a given
transmon qubit system.

calculation, a fixed frequency probes a specific set of
(m2, !m2) pairs, again as determined by Eq. (27). For
illustration, we display three representative frequency
choices: 1 GHz (green, solid), 5 GHz (green, dashed), and
10 GHz (green, dotted). For example, if a transmon qubit
system works between 1 GHz and 10 GHz, it essentially
explores the band defined by the solid and dotted green
lines. The DarQ exclusion bounds are shown in the (or-
ange, solid) line. The light-shaded region marks the pa-
rameter space where ϖϑ > 1, in which case the transition
probability must be evaluated using the full expression
pg↑e ↓ sin2(ϖϑ) as in Eq. (14). Two black dot-dashed
lines represent the boundary defined by ϖϑ = 1.

The transition probability p↓ for trapped ions in the
case of DM decay can be calculated as

p↓ = 1
8

(
eϑ Ē(e!)↔

mion ϱ

)2

(34)

= p0
↓

(
Ve! εDM

0.45 GeV cm→3

) ( ϑ

ϑ↓

)3 (
m↓

2
m2

)
, (35)

where the starred quantities indicate reference values.
Table I summarizes the trapped ion qubit parameters
for two ion species relevant to DM decays, including our
reference value choices. We have chosen m↓

2 = 1 eV
for illustration purposes, but one can choose any val-
ues for the mass of the decaying DM. Once it is fixed,
the mass-squared di!erence is given by !m2 = 2ϱ↓m2 =
4ςf↓m2. To determine ϑ↓ used in computing p0

↓ in Table
I, we adopt the shortest among the typical characteristic

5

While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
µUni

max
)2 → 48ε m2

2

( m2
”m2

)3
!U . (25)

Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV

m2

)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
eV

)
. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
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Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes
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where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV

m2

)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
eV

)
. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
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2)
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Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
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max), the transition probability for the transmon qubit
device becomes
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where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV
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)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
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. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
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)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition
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Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
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we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
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This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
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Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
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plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
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transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
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Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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process requires approximately 100 nanoseconds for
transmon qubits or microseconds to milliseconds
for trapped ions-durations that are negligible com-
pared to the coherence times involved.

(iii) For a given resonant frequency ω, the initialization-
evolution-readout sequence is repeated nrep times.
When measuring individual qubits, and requiring
at least one to transit from the ground to the ex-
cited state, the total number of measurements is
Ntry = nq → nrep, where nq represents the num-
ber of quantum sensors operated simultaneously
[7]. In contrast, if entanglement is used to boost
sensitivity, the measurement is performed on an an-
cilla qubit. In this case, the total number of mea-
surements reduces to Ntry = nrep [14]. Assuming
the decay-induced transitions occur independently
across sensors, the expected number of signal events
is

Nsig = p→ → Ntry. (19)

(iv) The entire measurement campaign is repeated
across di!erent sensor frequencies to probe various
particle mass ranges and decay channels, as di!er-
ent decay photon energies will resonate with sensors
tuned to corresponding frequencies. We consider
scanning the frequency range from 1 GHz to 10
GHz with a quality factor Q = 106, which sets the
frequency resolution to εf = f/Q. This results in
approximately 2.3 → 106 resolvable frequency bins
across the band. Running the experiment contin-
uously for one year (3.15 → 107 seconds) allows for
about 14 seconds of integration time per bin. We
consider two scenarios for the coherence time: a
fixed coherence time and the coherence time that is
given by ϑ = 2ϖQ

ω
with Q ↑ 106 following Ref. [7].

This protocol e!ectively converts the quantum mechani-
cal transition probability into a classical counting statis-
tics problem, where the sensitivity depends on accumu-
lating su"cient signal events above background to claim
detection or set exclusion limits.

In the case of multiple qubits, the transition probabil-
ity scales as p→ ↓ n2

q(ϱϑ)2 via entanglement schemes pro-
posed in Ref. [14]. The enhancement arises because the
quantum circuit allows new physics-induced signals from
individual qubits to add coherently rather than indepen-
dently, converting nq weak measurements into a single
strong measurement of the accumulated detections.

The false positive excitations (also known as dark
counts Ndark) are critical in the sensitivity calculation.
The primary source of dark counts is expected to be
qubit readout error, given that state-of-the-art single-
shot ground-state readout fidelity reaches approximately
99.9% when utilizing higher excited states [26]. Accord-
ingly, a uniform 0.1% readout error is assumed in the
subsequent discussion [7]. Thermal excitation is another

important source of dark counts, which can be estimated
as

Ndark = e↑ω/T Ntry , (20)

where T is the temperature of the transmon qubits or
trapped ions. We will consider T ↔ 30 mK, when pre-
senting our results. Other potential sources of false posi-
tive excitations are shielded from the qubit, thus consid-
ered as negligible.

III. SENSITIVITY OF QUANTUM DEVICES TO
PHYSICS MODELS

We are now ready to illustrate the search potential of
quantum devices for physics signals, beginning with the
radiatively decaying DM scenario, followed by the CςB
decay.

A. Dark matter decay

In this paper, we consider a two-component DM sys-
tem Xi (i = 1, 2) with X1 and X2 representing the lighter
and heavier DM candidates of masses m1 and m2, respec-
tively. One may consider various spin assignments for Xi.
In the case of (pseudo)scalar Xi, example interactions in-
clude a dimension-6 operator, φµX1φεX2F µε with F µε

being the usual field strength tensor for the SM pho-
ton. However, angular momentum conservation forbids
a scalar X2 from decaying into X1 and a photon. If a dif-
ferent spin is assigned to X1, such a decay is allowed—for
example, through a dark (pseudo)scalar portal-type op-
erator of the form X2FµεXµε

1 [27], where Xµε
1 is the field

strength of X1. If Xi is a fermion, m2 is required to be
greater than ↔ 100 eV in order to remain consistent with
the Pauli exclusion principle [28]. In this case, we find
that quantum devices with O(1)GHz operating frequency
are insensitive to the associated photon signal. However,
this mass bound may be avoided by introducing multiple
distinct DM components with quasi-degenerate masses
and no couplings to the SM particles [29].

In this subsection, for illustration, let us consider the
following interaction between massive spin-1 Xi and the
photon [30],

µXµ
1 Xε

2 F̃µε , (21)

where µ denotes the dimensionless coupling strength.
The decay rate of the heavier DM X2 into the lighter
one X1 and a photon is computed by

!(X2 ↗ X1 + ↼) = µ2

96ϖ

(m2
2 ↘ m2

1)3(m2
2 + m2

1)
m5

2m2
1

(22)

↑ µ2

48ϖ

(”m2)3

m5
2

, (23)

where the approximation in the second line is valid for
”m2 ≃ m2

1 ↭ m2
2.
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While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition
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where p0
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If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
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transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
eV

)
. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.

Ē(eff ) < EDarQ
max = ϵ 2ρDM

2

us consider the decay of the heavier species X2 into the
lighter species X1 and a photon:

X2 → X1 + ω, (1)

for which the photon energy is given by

Eω = m2
2 ↑ m2

1
2m2

= !m2

2m2
(2)

in the rest frame of X2. Here !m2 ↓ m2
2 ↑ m2

1 denotes
the squared-mass di!erence.

We assume that the particle X2 is non-relativistic and
either stable or has a very long lifetime, with a known
number density n2. Since each X2 could decay into X1
and a photon, the number density of photons nω should
be proportional to the number density of the decaying
particle X2. Therefore, the expected energy density of
photons is given by

εω = Eωnω ↔ !m2

2m2
n2 . (3)

The equality is governed by how many X2 particles decay
within a given time interval T . Assuming that the X2
lifetime is long enough, we find that εω is given by

εω = ” T n2
!m2

2m2
, (4)

where ” denotes the decay rate of X2. Since our goal is to
detect such decay photon signals using quantum devices,
the time interval T should be less than the coherence
time ϑ of a given quantum system, i.e., T < ϑ .

The produced photon is well described by a plane-wave

ϖE(e!) = Ē(e!)ϖnE sin(Eωt) , (5)

where ϖnE is the unit vector representing the direction of
the e!ective electric field ϖE(e!). Given that the photon
energy density stored in the electric field is εω = ϱ0 ϖE2,
we obtain

Ē(e!) =

√
” T n2!m2

2m2ϱ0
, (6)

where ϱ0 denotes the vacuum permittivity.1
Since we are interested in the extremely rare decay

events of X2, maximizing the e!ective detection volume
is essential for a successful experiment. To this end, we
propose an experimental setup wherein the quantum de-
vice is housed within a specialized cavity featuring highly
reflective inner walls, as depicted in Fig. 1. Conducting
materials feature high reflectivity for radio waves; for ex-
ample, polished aluminum and copper typically reflect

1 In natural units adopted here, ω0 is dimensionless and set to
unity.

X2

X2

X2

X1

X1X1

γ

qubits

conducting sphere

FIG. 1. Schematic diagram of the experimental setup consid-
ered in this paper. A conducting spherical cavity with reflec-
tive inner walls confines photons (ω) produced by the decay
of incoming X2 particles into X1 + ω. The trapped photon
eventually interacts with qubit sensors at the center, facili-
tating detection of these rare decay events. While illustrated
here as a spherical conducting cavity, the geometry need not
be spherical.

98–99% of incident radiation [23–25]. In this configura-
tion, DM or neutrinos—which we will discuss as concrete
physics case studies—can freely enter the cavity, but once
they decay into photons, the photons are confined, i.e.,
unable to escape due to repeated reflections o! the mir-
rored walls. Eventually, these trapped photons will in-
teract with the quantum device. This setup significantly
enhances the chance of detecting a signal by e!ectively
increasing the detection volume and thereby the expected
number of decay photons that interact with the sensor.
We denote the volume of this cavity as Ve! , expressed
in the same units as the number density n2. Under this
setup, the X2 number density n2 is e!ectively replaced
with n2Ve! , e.g.,

n2 → n2

(
Ve!
cm3

)
, (7)

where n2 is assumed to be given in units of cm→3 and Ve!
is treated as a dimensionless scaling factor. For example,
if a quantum device is enclosed within a 1 m3 cavity, the
e!ective volume would be Ve! = 106.

B. Interaction with quantum devices

We consider two types of quantum devices: (a) trans-
mon qubits and (b) trapped ions. Brief overviews of these
platforms follow here based on Refs. [7, 15].

(a) Transmon qubits: The e!ective electric field in-
duced by the photon from the X2 decay modifies the

5

While the relative abundances of X1 and X2 are model-
dependent, again for illustration, we take X2 as the dom-
inant component and X1 as subdominant

ωDM → m2 n2 , (24)

where n2 is the number density of X2. To ensure that X2
has a su!ciently long lifetime, we impose the condition

! ↭ !U = 2.299 ↑ 10→18 s→1, which yields the following
upper bound on the coupling µ (in the limit of ”m2 ↓
m2

1 ↭ m2
2)

(
µUni

max
)2 → 48ε m2

2

( m2
”m2

)3
!U . (25)

Under this condition (i.e., ! ↔ !U or equivalently, µ ↔
µUni

max), the transition probability for the transmon qubit
device becomes

p↑ ↗ p0
↑ ↑ cos2 #

(
Ve!ωDM

0.45 GeV cm→3

) (
”m2

m2
2

) (
d

100 µm

)2 (
C

0.1 pF

) (
f

1 GHz

) (
ϑ

100 µs

)3
, (26)

where p0
↑ denotes a reference transition probability, eval-

uated to be p0
↑ = 0.069. Note that the characteristic

frequency determined by the photon energy is not an in-
dependent parameter but is related to the DM masses
via Eq. (2):

f ↗ 1.2 GHz ↑
(

”m2

10→10 eV2

) (
10→5 eV

m2

)
. (27)

If we instead adopt a more stringent constraint on the
DM lifetime based on CMB and reionization bounds, ! ↭
!CMB = 1.7↑10→25 s→1 [31], the corresponding reference
probability is significantly reduced to p0

↑ = 5.15 ↑ 10→9.
The DarQ collaboration has recently reported its first

results in the search for the hidden dark photon using
transmon qubits [22]. Although the related detection
principle for hidden dark photons di"ers, the DarQ re-
sults can still constrain the parameter space of the de-
caying DM scenario under consideration, as they are ef-
fectively sensitive to Ē(e!). DarQ shows that the kinetic
mixing parameter ϖ must be below 10→12 for the reso-

nance frequency fDarQ
res = ϱDarQ

res
2ε

= 8.74 GHz. This reso-
nance frequency corresponds to 36.1 µeV, and by Eq. (2)
we identify

Eω = ”m2

2m2
= ϱDarQ

res = 36.1 µeV. (28)

Taking ωDM = 0.45 GeV/cm3, we find that the expected
limit on the e"ective electric field is EDarQ

max = ϖ
↘

2ωDM =
2.63↑10→15 eV2. By requiring Ē(e!) < EDarQ

max , the exclu-
sion limit based on the DarQ results [22] can be mapped
onto the relevant parameter space for DM decay. Using
Eqs. (6), (24), and (28) and setting Ē(e!) = EDarQ

max , we
find the boundary value:

m2 = !T ϱDarQ
res

2ς0ϖ2 = 4.15 ↑ 10→5 eV, (29)

where we take 1 µs as the coherence time T of DarQ [32]
and assume ! = !U = 2.299 ↑ 10→18 s→1. This is rep-

resented by the vertical black dotted line in Fig. 2, be-
yond which the corresponding m2 values are excluded by
DarQ. Under the same assumption, the upper bound on
the µ parameter can be obtained using Eq. (25), noting

that ”m2

m2
= 2ϱDarQ

res :

µ ≃ µUni
max = 7.78 ↑ 10→10 ↑

(m2
eV

)
. (30)

This bound is shown as the dashed green line in Fig. 2,
indicating that the region above this line is excluded by
DarQ. Finally, we present the constraint on µ in Eq. (23)
as a function of the DM mass m2, i.e., not fixing !. The
allowed region is given by

µ2 <
12εϖ2ς0

(ϱDarQ
res )4T

m3
2 = 1.46 ↑ 10→14 ↑

(m2
eV

)3
. (31)

and the associated boundary is shown by the solid blue
line. In summary, the constraints from the DarQ results
lead to an upper bound of m2 < 4.15↑10→5 eV along the
fixed-ratio slice ”m2/m2 = 2ϱDarQ

res . Taking the CMB
bound, ! ↭ !CMB = 1.7↑10→25 s→1 (instead of ! ↭ !U),
we obtain m2 < 3.07 ↑ 10→12 eV with µCMB

max = 2.12 ↑
10→13 ↑

(
m2
eV

)
.

Following the measurement protocol in Section II C, in
Fig. 3, we now show the 5φ discovery (red, solid) and 2φ
exclusion2 (blue, dashed) significances in the (m2, ”m2)
plane, assuming the maximum µ coupling in Eq. (25)
and a 14-second data collection for each frequency as
per the measurement protocol with a constant coherence
time of 100 µs. For illustrative purposes, the scanned fre-
quencies for the significance contours e"ectively cover the
range starting from approximately 0.4 GHz and above.
The 5φ discovery significance is calculated via the maxi-
mum likelihood ratio for excluding the background-only

2 i.e., the line above is excluded, if there is no signal.
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A simplified Setup: signal-sensor interaction

• Core setup for many quantum sensing protocols in HEP 
(Details vary, but the essential physics is often similar)

• Sensor: A Two-Level Quantum System 
• A qubit as a simple example 
• Two states: Ground 0 and Excited 1 
• Can be a physical qubit, a cavity 

mode ( 𝑛 = 0 , 𝑛 = 1 ) etc.

• Signal: A Weak Classical Field 
• E.g., wave-like DM, high-frequency GWs 

• Drive transitions from  to  
• Interaction Hamiltonian: 

 

• : Signal strength (the quantity to be 
estimated)  

• : Signal phase (often stochastic/random)

|0⟩ |1⟩

HI = ϵ(cos α σX + sin α σY)
ϵ

α
• The Goal to estimate the signal strength .   

1. Evolve: System evolves from  (ground state of free Hamiltonian) under  .    For a weak signal 
,  

2. Measure: Project  onto  and  . Probability of finding  : 

ϵ
|0⟩ HI

ϵ t ≪ 1 |ψ (0)⟩ = |0⟩ ⟶ |ψ (t)⟩ = U(t) |ψ (0)⟩ ≈ |0⟩ − ieiα ϵt |1⟩

|ψ (t)⟩ |0⟩ |1⟩ |1⟩ p1 = ⟨1 |ψ (t)⟩
2

= ϵ2 t2



Advantages of Quantum Sensing
• Classical sensing: typically for strong signals 
• Quantum sensing: significant advantages for weak signals  

• Key quantum features for sensing 
– Fundamental limits from zero-point fluctuations 
– Enhanced sensitivity through entanglement, surpassing 

classical limits 

• Promising applications in fundamental physics, where 
signals are often extremely weak and changing in time 
with unknown frequencies. 
– Dark matter searches 
– Neutrino transition magnetic moment



E⃗(X) coherently acts on Nq qubits:

E⃗(X) = −Ē(X)n⃗X cos(mXt+ α)

UDM induces pure phase rotation of its eigenstates

E.g. for α = 0: UDM ≃
(
1 iδ

iδ 1

)
with δ ≡ ητ

⇒ UDM|±⟩ = e±iδ|±⟩ with |±⟩ ≡ 1√
2

(
|g⟩± |e⟩

)

⇒ U⊗Nq

DM |+⟩⊗Nq = eiNqδ|+⟩⊗Nq

We can design quantum operations to enhance the signal
⇒ Quantum enhanced parameter estimation

[Giovannetti, Lloyd, Maccone (’04)]
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One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t0

|Ψ(t0)⟩ = |+⟩ ⊗ |+⟩⊗Nq =
1√
2
|0⟩ ⊗ |+⟩⊗Nq +

1√
2
|1⟩ ⊗ |+⟩⊗Nq
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One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t1

|Ψ(t1)⟩ =
1√
2
|0⟩ ⊗ |+⟩⊗Nq +

1√
2
|1⟩ ⊗ |−⟩⊗Nq

Basic unitary operations (quantum gates)

• Z gate

Z = |g⟩⟨g|− |e⟩⟨e| ⇒ |+⟩ Z−→ |−⟩ with |±⟩ ≡ 1√
2

(
|g⟩± |e⟩

)

• Hadamard gate

H = |+⟩⟨g|+ |−⟩⟨e| ⇒ |g⟩ H−→ |+⟩, |e⟩ H−→ |−⟩

• Controlled Z gate

CZ = |0⟩⟨0|⊗ 1+ |1⟩⟨1|⊗ Z

⇒ 1√
2

(
|0⟩+ |1⟩

)
⊗ |+⟩ CZ−−→ 1√

2
|0⟩ ⊗ |+⟩+ 1√

2
|1⟩ ⊗ |−⟩

One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t1

|Ψ(t1)⟩ =
1√
2
|0⟩ ⊗ |+⟩⊗Nq +

1√
2
|1⟩ ⊗ |−⟩⊗Nq
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Z | ± ⟩ = ± | ∓ ⟩



One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t2

|Ψ(t2)⟩ =
1√
2
eiNqδ|0⟩ ⊗ |+⟩⊗Nq +

1√
2
e−iNqδ|1⟩ ⊗ |−⟩⊗Nq
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One measurement cycle for the signal enhancement

CZ0 +
H

g +
H

H

Z Z

CZ

UDM

g +
H Z ZUDM

g +
H Z ZUDM

Ancilla

Sensors

t3

|Ψ(t3)⟩ =
1√
2
eiNqδ|0⟩ ⊗ |+⟩⊗Nq +

1√
2
e−iNqδ|1⟩ ⊗ |+⟩⊗Nq

=
(
cos Nqδ |+⟩+ i sin Nqδ |−⟩

)
⊗ |+⟩⊗Nq
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