# Quantum Sensing Radiative Decays of Neutrinos and Dark Matter Particles



## K.C. Kong University of Kansas



2508.09139: in collaboration with Z. Dong, D. Kim, M. Park, M. Soto Alcaraz

CPNR Workshop
Neutrinos and Physics beyond the Standard Model
Chonnam National University
October 24-27, 2025

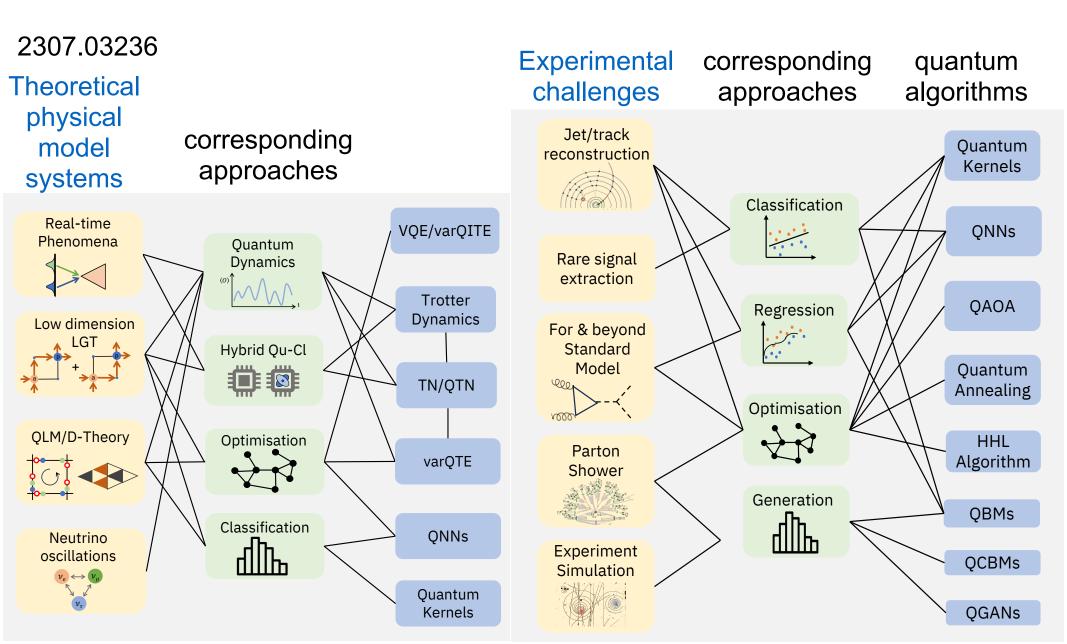
# Where quantum computers are (potentially) useful

- Quantum optimization: combinatorial problems at the LHC 2410.22417
  - Finance, physics, materials discovery, science

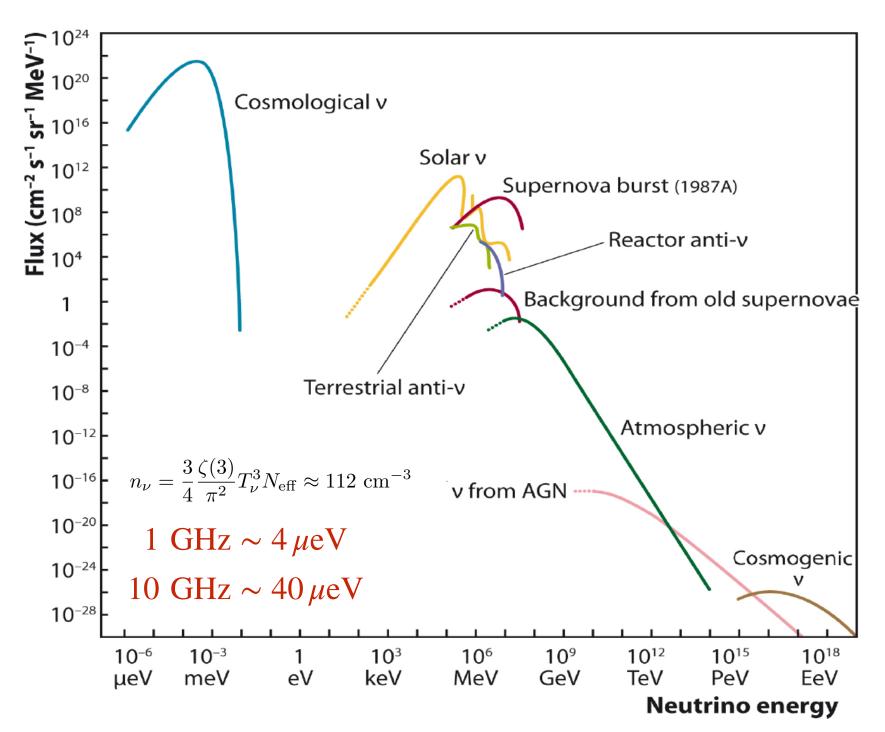
2508.09139

- Quantum devices (qubits) as sensors: detection of dark matter and neutrino decays
  - Dark matter detection, quantum magnetometry + electrometry, atomic clocks
- Quantum simulation/Hamiltonian simulation
  - Physics, chemistry
- Quantum machine learning 2510.10501, 2411.15315, 2412.21082, 2411.13520
  - Classification, generative models, anomaly detection
- Quantum cryptography and security
  - Quantum key distribution, post-quantum cryptography
- Quantum linear algebra and numerical methods
  - HHL algorithms, eigenvalue problems
- Quantum communication and networks
  - Entanglement and violation of Bell's inequality 2407.01663, 2407.07147, 2305.07075
  - Teleportation, quantum internet
- Quantum sampling
  - Supremacy tasks, random circuits

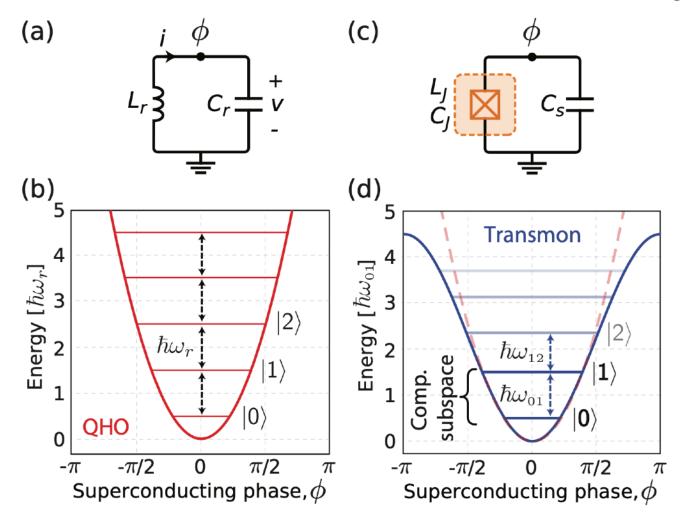
# Quantum Computing for High-Energy Physics State of the Art and Challenges Summary of the QC4HEP Working Group



Neutrino fluxes from different sources as a function of the neutrino energy



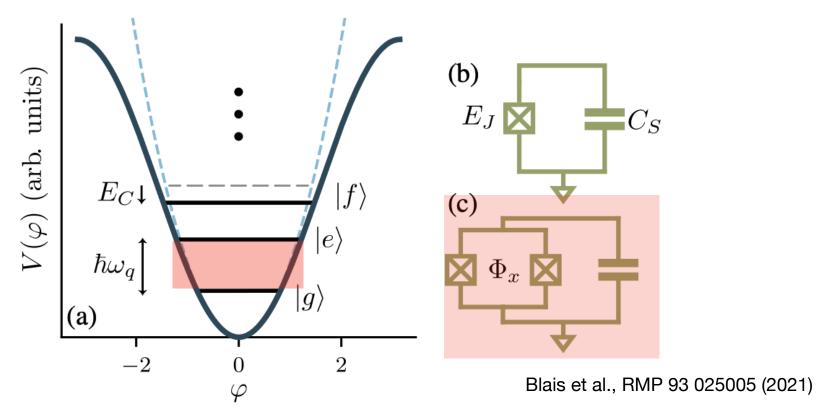
### Transmon qubit = Capacitor + Josephson junction



P. Krantz et.al Applied Physics Reviews 6, 021318 (2019)

- Josephson nonlinearity breaks the harmonic spectrum, leading to discrete, unequal energy levels.
- ullet A system of two lowest states can be considered as qubit with  $\omega_{01}$ .

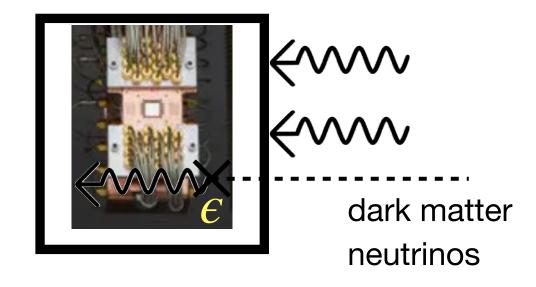
### Transmon qubit = Capacitor + Josephson junction



- "By using a superconducting quantum interference device (SQUID) rather than a single junction, the frequency of the transmon qubit becomes flux tunable."
- Transmon qubits have discrete energy levels that can be controlled.
- $\bullet$  One can scan the frequency  $\omega_{q}$  in the (c) SQUID-based system.

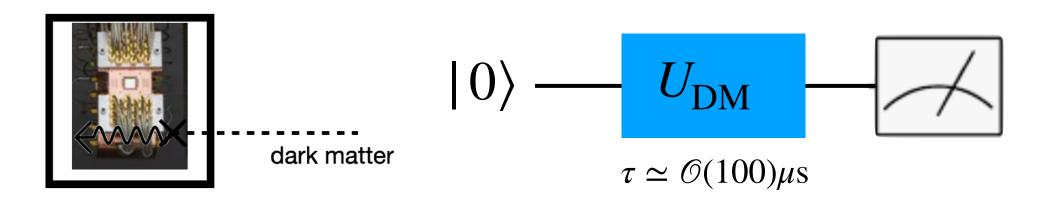
$$\omega \simeq \mathcal{O}(1-10)\,\mathrm{GHz}$$
  $\lambda \simeq \mathcal{O}(3-30)\,\mathrm{cm}$ 





- For typical device parameters,  $\omega \simeq \mathcal{O}(1-10) \mathrm{GHz}$  with  $\lambda \simeq \mathcal{O}(3-30) \mathrm{cm}$
- At refrigerator temperatures O(1-10)mK, a few-GHz transition satisfies  $k_BT \ll \hbar \omega$ .
  - Thus thermal excitation is strongly suppressed, and the qubit stays in the ground state.
- "Dark Matter" could penetrate the shield, and induce a weak electric field that couples to qubit,  $E^{(\text{ext})} = \epsilon \sqrt{2\rho_{\text{DM}}} \sin m_X t, \text{ here } \epsilon \text{ is a kinetic-mixing parameter, } \rho_{\text{DM}} \text{ is the local DM density.}$
- If the DM-induced photons fall within this frequency band, they can resonantly excite the qubit effectively turning dark-matter interactions into observable qubit errors. For a de Broglie wavelength in this range,  $m_{DM}\sim\mathcal{O}(4-40)\mu\text{eV}$

# Dark Matter as an operator $U_{\mathrm{DM}}$



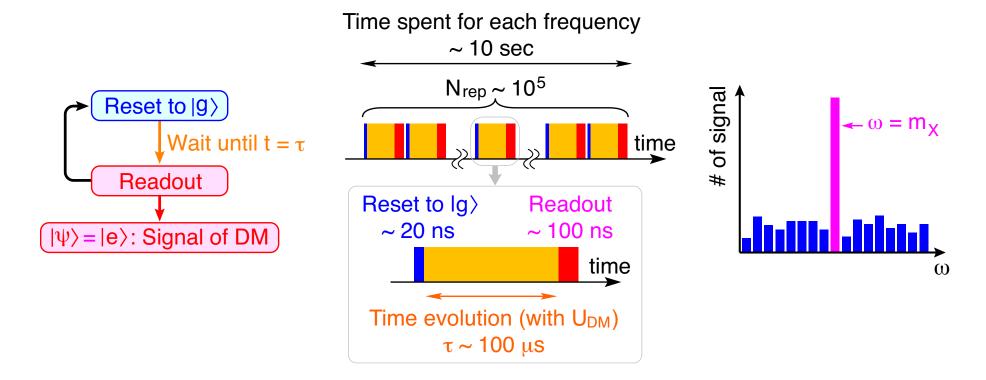
- Signal: a weak classical field: wave-like DM, high-frequency gradational waves
- The interaction between DM and qubits,  $H_{DM}=\epsilon(\cos\alpha\,\sigma_X+\sin\alpha\,\sigma_Y)$  will drive transitions from  $|0\rangle$  to  $|1\rangle$ .
- The Goal to estimate the signal strength  $\epsilon$ .
  - 1. Evolve: System evolves from  $|0\rangle$  (ground state of free Hamiltonian) under  $H_{DM}$ . For a weak signal  $\epsilon t \ll 1$ ,

$$|\psi(0)\rangle = |0\rangle \longrightarrow |\psi(t)\rangle = U(t)|\psi(0)\rangle \approx |0\rangle - ie^{i\alpha}\epsilon t|1\rangle$$

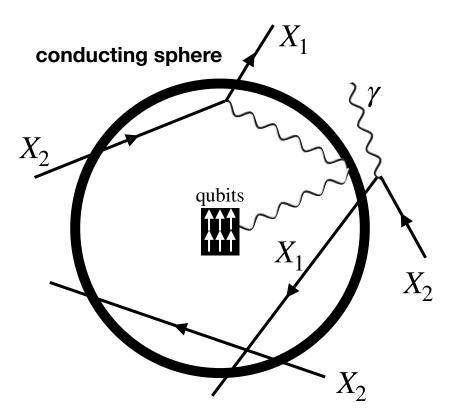
2. Measure: Project  $|\psi(t)\rangle$  onto  $|0\rangle$  and  $|1\rangle$  . Probability of finding  $|1\rangle$  :

$$p_1 = \left| \langle 1 | \psi(t) \rangle \right|^2 = \epsilon^2 t^2$$

# Dark Matter as an operator $U_{\mathrm{DM}}$



- Qubits are exposed to microwaves from dark matters over the coherence time  $\mathcal{O}(100)\mu\mathrm{s}$
- One can repeat a cycle of (Reset  $\to U_{\rm DM} \to$  Measurement) as many as  $\mathcal{O}(10^5)$  during 10 seconds.
  - Time for reset qubits  $\sim \mathcal{O}(10)\mu s$
  - Time for measurement  $\simeq \mathcal{O}(100) \text{ns}$



- Photon from the transition process of a heavier state into a lighter state will couple to qubits.
- A conducting cavity with reflective inner walls confines photons.

- Two scenarios:
  - 1) Heavier "dark" particle  $X_2$  decays into lighter particle  $X_1$  and a photon  $\gamma$ , with an interaction Lagrangian  $\mu X_1^\mu X_2^\nu \tilde F^{\mu\nu}$
  - 2) Cosmic neutrino background  $C\nu B$ , with transition via neutrino magnetic moment interaction,  $L \ni (\mu_{\nu}^{ij}/2) \, \bar{\nu}_i \sigma^{\mu\nu} \nu_j F_{\mu\nu}$  2508.09139

(Many thanks to Prof. Kyu Jung Bae and Prof. Takeo Moroi for useful discussion.)

# Radiative Decays of Neutrinos and Dark Matter Particles

Photon from a decay process is described by a plane-wave

$$\overrightarrow{E}_{\rm eff} = \overline{E}_{\rm eff} \overrightarrow{n}_E \sin(E_\gamma t)$$
 with a photon energy  $E_\gamma = \frac{m_{X_2}^2 - m_{X_1}^2}{2m_{X_2}}$ .

- Energy density of photons  $\rho_\gamma=E_\gamma n_\gamma=\epsilon_0 \bar E_{
  m eff}^2$  with  $n_\gamma \propto \Gamma_{X_2} n_{X_2}$
- Interaction between a photon from decay process and qubit,

$$H_{\text{int}} = CVd\bar{E}_{(\text{eff})}\cos\Theta\sin(E_{\gamma}t) \equiv 2\eta\sin(E_{\gamma}t)(\hat{a} + \hat{a}^{\dagger}),$$

so that the total Hamiltonian

$$H = \omega |e\rangle \langle e| + 2\eta \sin(E_{\gamma}t) (|e\rangle \langle g| + |g\rangle \langle e|)$$

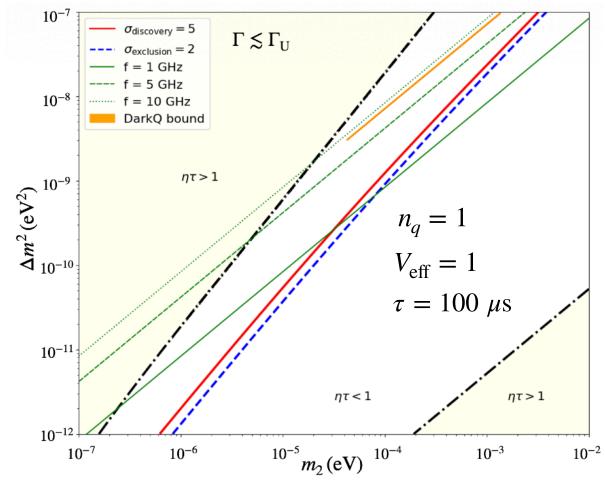
• If one tunes  $\omega \simeq E_\gamma$ , then with rotating-wave approximation which neglects the rapid oscillation with averaging into 0,

with initial condition of  $\psi_{g}(0) = 1$  and  $\psi_{e}(0) = 0$ 

• Thus, a transition probability  $p_{g \to e}(t)$  from  $|g\rangle \to |e\rangle$ 

$$p_* \equiv p_{g \to e}(\tau) = |\psi_e(\tau)|^2 \simeq \sin^2(\eta \tau) \simeq (\eta \tau)^2$$
 within a coherent time

- Signals:  $N_{\rm sig} = p_* \times N_{\rm try}$
- Backgrounds
  - \_ Uniform 0.1% readout error:  $10^{-3} \times N_{\rm try}$
  - \_ Thermal noise:  $e^{-\omega/T} \times N_{\rm try}$ , where  $T \sim 30 \, {\rm mK}$



- Scanning the frequency range from 1 10 GHz with a quality factor  $Q=10^6$ , which sets the frequency resolution to  $\delta f=f/Q$ .
- This corresponds to about  $2.3 \times 10^6$  resolvable frequency bins across the **1-10GHz** range
- One year continuous scan  $(3.15\times 10^7 \text{s}) \text{ yields } 14 \text{s of integration time per frequency bin,}$  corresponding to  $N_{\text{try}} = \mathcal{O}(10^5) \, / \,$  bin

$$p_* = 0.069$$

$$p_* \simeq p_*^0 \times \cos^2\Theta \left(\frac{V_{\rm eff}\rho_{\rm DM}}{0.45\,{\rm GeV\,cm^{-3}}}\right) \left(\frac{\Delta m^2}{m_2^2}\right) \left(\frac{d}{100\,\,\mu{\rm m}}\right)^2 \left(\frac{C}{0.1\,\,{\rm pF}}\right) \left(\frac{f}{1\,\,{\rm GHz}}\right) \left(\frac{\tau}{100\,\,\mu{\rm s}}\right)^3$$

• Assuming a local dark matter density  $ho_{\rm DM}=0.45~{
m GeV/cm^3}$  and decay rate  $\Gamma\lesssim\Gamma_{\rm U}=2.299\times10^{-18}\,{
m s^{-1}}$  ensuring that  $X_2$  remains stable over the age of the universe.

## Quantum Enhancement of the Signal Rate

Suppose we have N identical sensors. What is the maximum sensitivity?

#### Without entanglement

$$|0\rangle \xrightarrow{\mathsf{DM}} |0\rangle - i\epsilon\tau |1\rangle \implies p = \epsilon^2 \tau^2$$

$$|0\rangle \xrightarrow{\mathsf{DM}} |0\rangle - i\epsilon\tau |1\rangle \implies p = \epsilon^2 \tau^2$$

$$\vdots$$

$$|0\rangle \xrightarrow{\mathsf{DM}} |0\rangle - i\epsilon\tau |1\rangle \implies p = \epsilon^2 \tau^2$$



$$p_{total} = 1 - (1 - p)^N \approx Np = Ne^2 \tau^2$$

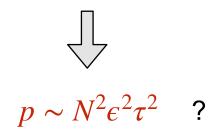
# Classical N independent system are prepared and separately detected

#### With entanglement

$$|\psi\rangle \equiv$$
 some entangled state

$$|\psi\rangle \stackrel{\mathsf{DM}}{\longrightarrow} |\psi\rangle + O(N\epsilon\tau) |\psi_{\perp}\rangle$$

An example of such a state is the GHZ state.

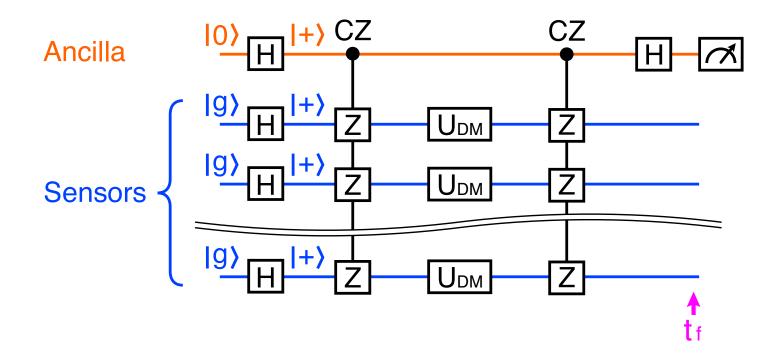


#### Quantum

 Highly correlated configurations are measured collectively with a single measurement that encompasses all the systems.

### Quantum Enhancement of the Signal Rate

One measurement cycle for the signal enhancement

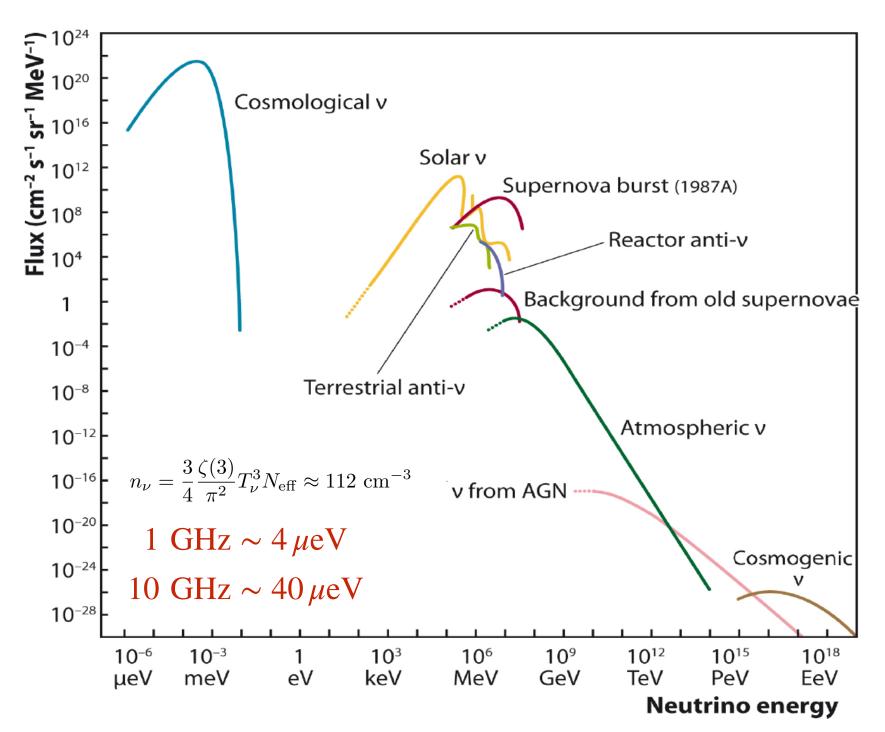


$$|\Psi(t_{\rm f})\rangle = (\cos N_{\rm q}\delta |0\rangle + i \sin N_{\rm q}\delta |1\rangle) \otimes |+\rangle^{\otimes N_{\rm q}}$$

 $\Rightarrow$  Ancilla qubit can be excited:  $P_{0\to 1} \simeq \sin^2 N_{\rm q} \delta \simeq N_{\rm q}^2 \delta^2$ 

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL

Neutrino fluxes from different sources as a function of the neutrino energy



# Neutrino transition magnetic moment

$$E_{C\nu B} \sim 10^{-6} - 10^{-4} \text{ eV}$$

$$n_{\nu} = \frac{3}{4} \frac{\zeta(3)}{\pi^2} T_{\nu}^3 N_{\text{eff}} \approx 112 \text{ cm}^{-3}$$

$$\frac{\mu_{\nu}^{ij}}{2}\bar{\nu}_{i}\sigma^{\mu\nu}\nu_{j}F_{\mu\nu} + h.c.$$

$$\mu_{\nu} = \frac{3eG_F m_{\nu}}{8\sqrt{2}\pi^2} \approx 3 \times 10^{-19} \mu_B \left(\frac{m_{\nu}}{1 \text{ eV}}\right)$$

$$\Gamma_{ij} = \Gamma(\nu_i \to \nu_j + \gamma) = \frac{\mu_{ij}}{8\pi m_i} \frac{\Delta m_{ij}^2}{2m_i} \qquad \qquad \bar{E}_{(\text{eff})} = \sqrt{\frac{\Gamma_{ij} \mathcal{T} V_{\text{eff}} n_\nu \Delta m_{ij}^2}{2m_i \varepsilon_0}}$$

$$\Delta m_{21}^2 = 7.59 \times 10^{-5} \text{ eV}^2$$
  
 $\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$ 

$$\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2$$

$$m_2 \simeq \sqrt{\Delta m_{21}^2} \sim 8.6 \times 10^{-3} \text{ eV}$$
  
 $m_3 \simeq \sqrt{\Delta m_{32}^2 + \Delta m_{21}^2} \sim 0.05 \text{ eV}$ 

$$m_3 \simeq \sqrt{\Delta m_{32}^2 + \Delta m_{21}^2} \sim 0.05 \text{ eV}$$

$$m_2 \simeq \sqrt{|\Delta m_{32}^2|} \sim 0.05 \text{ eV}$$

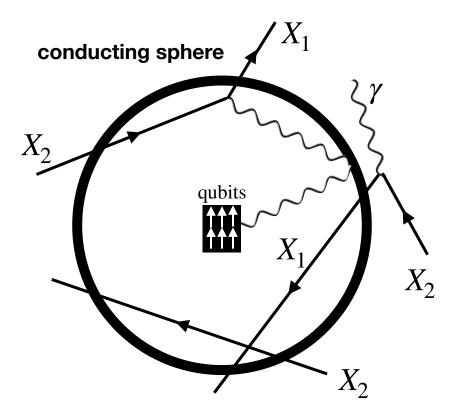
$$m_1 \simeq \sqrt{|\Delta m_{32}^2 + \Delta m_{21}^2|} \sim 0.0492 \text{ eV}$$
  $m_2 \simeq \sqrt{|\Delta m_{32}^2|} \sim 0.05 \text{ eV},$ 

$$\bar{E}_{(\text{eff})} = \sqrt{\frac{\Gamma_{ij} \mathcal{T} V_{\text{eff}} n_{\nu} \Delta m_{ij}^2}{2m_i \varepsilon_0}}$$

$$p_* \simeq p_*^0 \times \left(\frac{d}{100 \ \mu\text{m}}\right)^2 \left(\frac{C}{0.1 \ \text{pF}}\right) \left(\frac{f}{1 \ \text{GHz}}\right) \left(\frac{\tau}{100 \ \mu\text{s}}\right)^3 \left(\frac{\mu}{10^{-11} \ \mu_B}\right)^2 \left(\frac{\Delta m_{ij}^2}{10^{-5} \ \text{eV}^2}\right)^4 \left(\frac{V_{\text{eff}} \ n_{\nu}}{112 \ \text{cm}^{-3}}\right) \left(\frac{0.05 \ \text{eV}}{m_i}\right)^4$$

$$p_*^0 = 2.1 \times 10^{-27}$$
  $f \simeq 24 \text{ GHz} \times \left(\frac{\Delta m_{ij}^2}{10^{-5} \text{ eV}^2}\right) \left(\frac{0.05 \text{ eV}}{m_i}\right)$   $\mu_B = \frac{e\hbar}{2m_e}$ 

NH

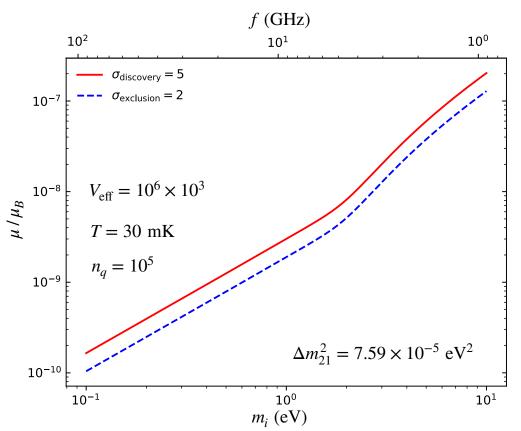


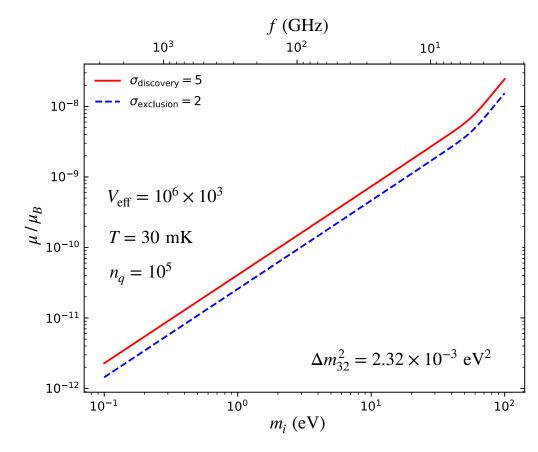
Polished aluminum and copper typically reflect 98–99% of incident radiation
In this configuration, DM or neutrinos can freely enter the cavity, but once they decay into photons, the photons are confined. Eventually, these trapped photons will interact with the quantum device.

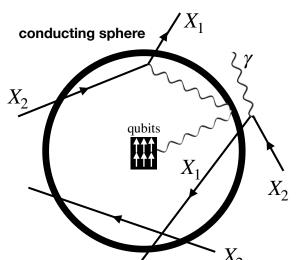
 This setup significantly enhances the chance of detecting a signal by effectively increasing the detection volume and thereby the expected as

$$n_t \to n_e \left(\frac{V_{\rm eff}}{{\rm cm}^3}\right) \to n_2 \times 10^6 \text{ for } 1 \, {\rm m}^3 \text{ cavity.}$$

### Bounds on neutrino transition magnetic moment







#### Decay volume

$$n_2 \to n_2 \left(\frac{V_{\text{eff}}}{\text{cm}^3}\right)$$

$$V_{\rm eff} = 1 \,\mathrm{m}^3 = 10^6 \,\mathrm{cm}^3$$

#### Entanglement

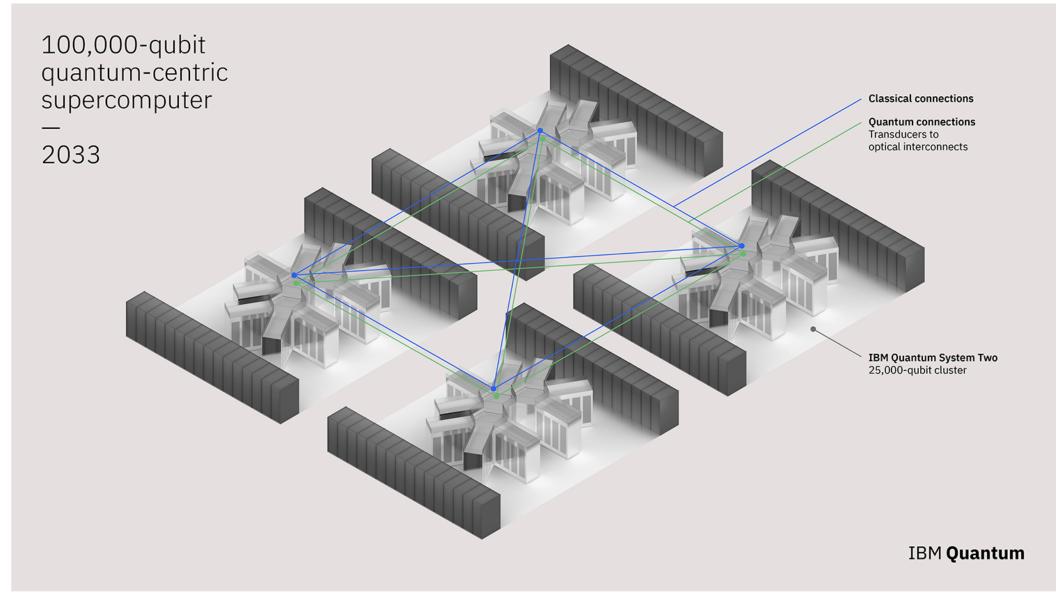
$$P_* \simeq n_q^2 \, (\eta \, \tau)^2$$

$$n_q = 10^5$$

Current reactor bounds are  $\mu < 10^{-11} \ \mu_B$ 

2508.09139

# Charting the course to 100,000 qubits



- All other quantum computing companies (D-wave, IonQ, Google etc) are also targeting Large-Scale, Fault-Tolerant Quantum Computers for next 10-20 years.
- The future may arrive sooner than we expect.

## Quantum devices (qubits) as sensors

#### Detecting Hidden Photon Dark Matter Using the Direct Excitation of Transmon Qubits

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Takeo Moroi, Tatsumi Nitta, and Thanaporn Sichanugrist

#### Quantum Enhancement in Dark Matter Detection with Quantum Computation

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, and Thanaporn Sichanugrist.

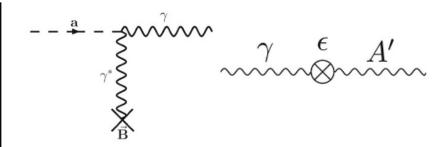
#### Eliminating Incoherent Noise: A Coherent Quantum Approach in Multi-Sensor Dark Matter Detection

Talk by Bin Xu on Day 3

Jing Shu,<sup>1, 2, 3</sup> Bin Xu,<sup>1</sup> and Yuan Xu<sup>4, 5</sup>

## Search for QCD axion dark matter with transmon qubits and quantum circuit

Shion Chen<sup>(a)</sup>, Hajime Fukuda<sup>(b)</sup>, Toshiaki Inada<sup>(c)</sup>, Takeo Moroi<sup>(b,d)</sup>, Tatsumi Nitta<sup>(c)</sup>, Thanaporn Sichanugrist<sup>(b)\*</sup>



Quantum entanglement of ions for light dark matter detection

Asuka Ito<sup>1,2</sup>, Ryuichiro Kitano<sup>2,3</sup>, Wakutaka Nakano<sup>2</sup> and Ryoto Takai<sup>2,3</sup>

#### Directional search for light dark matter with quantum sensors

Hajime Fukuda\*

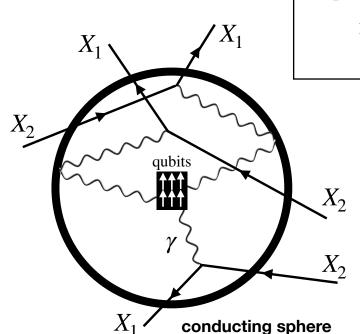
Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan

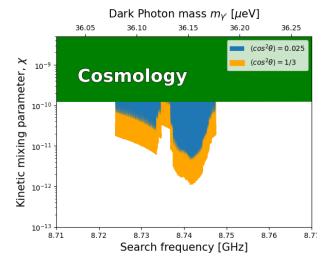
#### Ultralight dark matter detection with trapped-ion interferometry

Leonardo Badurina,<sup>1</sup> Diego Blas,<sup>2,3</sup> John Ellis,<sup>4,5</sup> and Sebastian A. R. Ellis<sup>6</sup>

Search for Dark Photon Dark Matter of a Mass around  $36.1~\mu eV$  Using a Frequency-tunable Cavity Controlled through a Coupled Superconducting Qubit

K. Nakazono,<sup>1,\*</sup> S. Chen,<sup>2</sup> H. Fukuda,<sup>1</sup> Y. Iiyama,<sup>3</sup> T. Inada,<sup>3</sup> T. Moroi,<sup>1,4</sup> T. Nitta,<sup>4</sup> A. Noguchi,<sup>5,6,7</sup> R. Sawada,<sup>3</sup> S. Shirai,<sup>5,6</sup> T. Sichanugrist,<sup>1</sup> K. Terashi,<sup>3</sup> and K. Watanabe<sup>1</sup> (DarQ Collaboration)





#### Quantum Sensing Radiative Decays of Neutrinos and Dark Matter Particles

Zhongtian Dong,<sup>1,\*</sup> Doojin Kim,<sup>2,†</sup> Kyoungchul Kong,<sup>1,‡</sup> Myeonghun Park,<sup>3,4,5,§</sup> and Miguel A. Soto Alcaraz<sup>1,</sup>

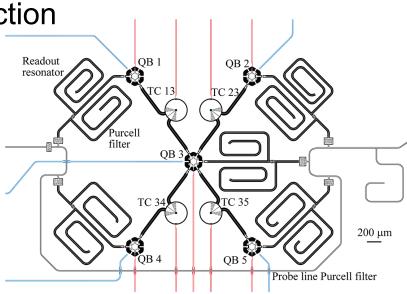
# Summary

- Particle physics has long operated at the forefront of technological innovation - for example, through the development of low-temperature superconducting systems used in the LHC.
- Recently, several promising efforts have emerged to harness quantum technologies, including quantum simulation, quantum machine learning, quantum sensing, and quantum networking.
- In this talk, we showed that a gate-based quantum computer can be programmed to detect photons produced in the radiative decays of dark matter and neutrinos.
- While the proposed approach can effectively explore viable parameter spaces in two-component dark matter models, detecting cosmic neutrinos remains a significant challenge with current quantum algorithms.

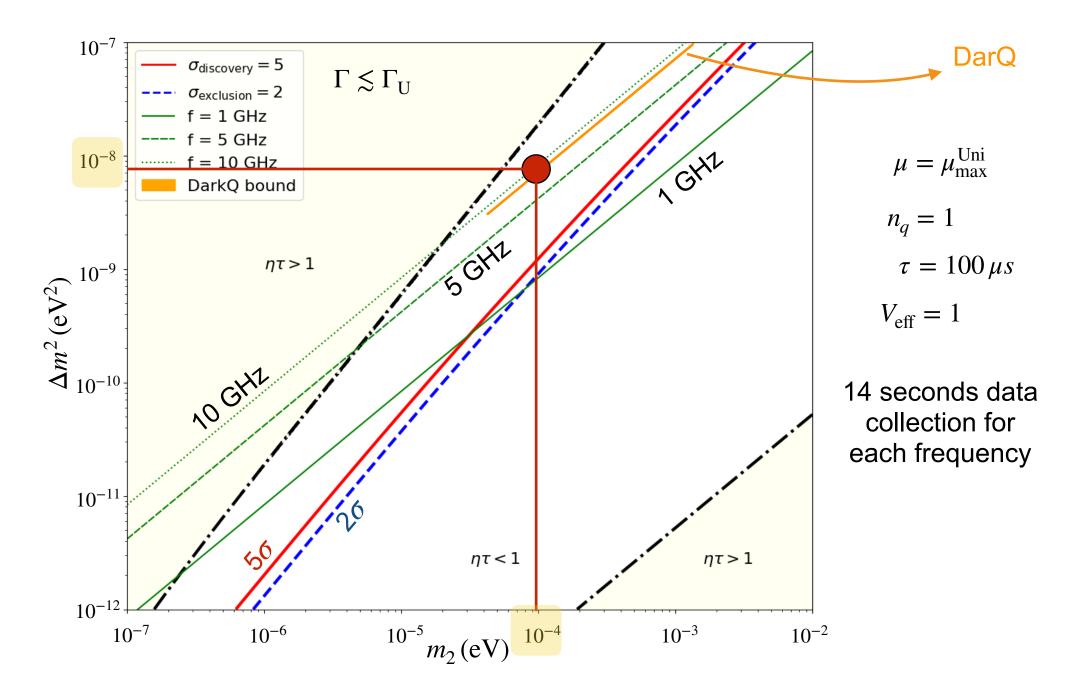
### Discussion

- Quantum algorithms that could enhance beyond  $n_q^2$
- What about other quantum devices
  - Transmon, trapped ion, Rydberg, what else?
  - Ge-based spin qubits
- Testing on real quantum computers is being discussed.
  - IQM Spark 5 qubits
- Other sources of photons
  - Hidden photon dark matter, axions, DM decays
  - High frequency gravitational wave detection

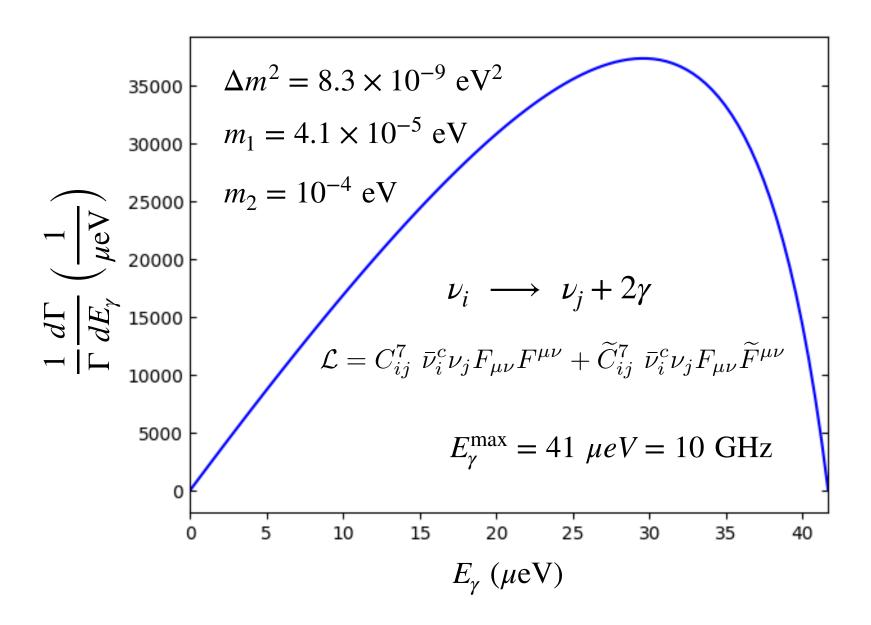
$$-X_2 \longrightarrow X_1 + \gamma + \gamma$$



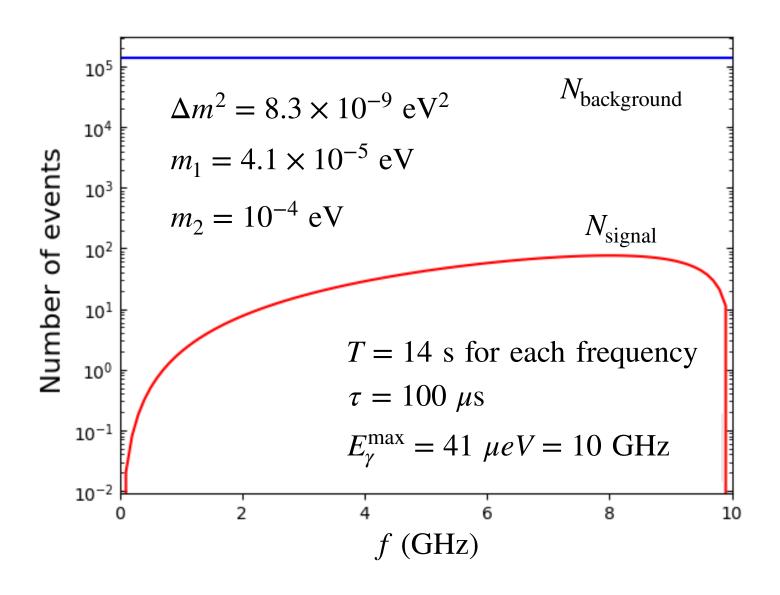
# $X_2 \longrightarrow X_1 + \gamma + \gamma$



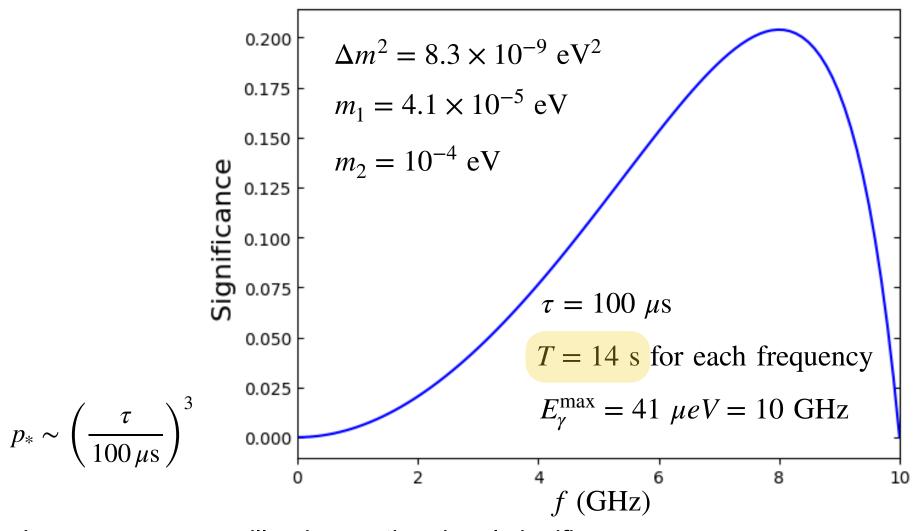
$$X_2 \longrightarrow X_1 + \gamma + \gamma$$



$$X_2 \longrightarrow X_1 + \gamma + \gamma$$



$$X_2 \longrightarrow X_1 + \gamma + \gamma$$

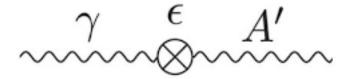


- Longer exposure will enhance the signal significance.
- Do not need to scan entire frequency range (between 1 GHz and 10 GHz).
- Signal could appear more than one place.

### Sources of Electric Fields

|g⟩ ↔ |e⟩ transition occurs if DM field generates electric field

- Hidden photon



2212.03884, transmon

2507.12860, Rydberg atom

2507.17825, trapped ion

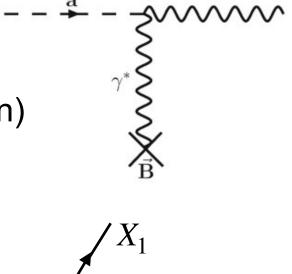
- Axions (if external magnetic field is given)

2407.19755, transmon

2507.17825, trapped ion

DM and neutrino decays

2508.09139, transmon, trapped ion  $X_2$ 



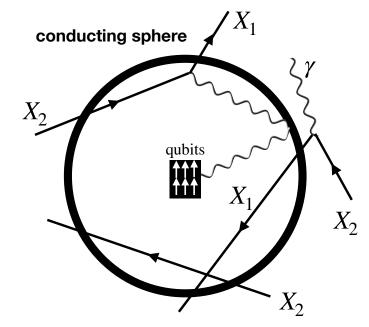
# Radiative Decays of Dark **Matter Particles**

$$X_2 \to X_1 + \gamma$$
 E

$$X_2 \to X_1 + \gamma$$
  $E_{\gamma} = \frac{m_2^2 - m_1^2}{2m_2} = \frac{\Delta m^2}{2m_2}$ 

$$\rho_{\gamma} = E_{\gamma} n_{\gamma} = \Gamma \mathcal{T} n_2 \frac{\Delta m^2}{2m_2}$$

$$\vec{E}_{(\text{eff})} = \bar{E}_{(\text{eff})} \vec{n}_E \sin(E_{\gamma} t)$$



$$\vec{E}_{(\text{eff})} = \bar{E}_{(\text{eff})} \vec{n}_E \sin(E_{\gamma} t)$$
  $\bar{E}_{(\text{eff})} = \sqrt{\frac{\Gamma \mathcal{T} n_2 \Delta m^2}{2m_2 \varepsilon_0}}$ 

#### For transmon qubits

$$\mathcal{H}_{\text{int}} = CV d\bar{E}_{(\text{eff})} \cos \Theta \sin(E_{\gamma} t)$$
$$= 2\eta \sin(E_{\gamma} t) (\hat{a} + \hat{a}^{\dagger}),$$

$$\eta \equiv \frac{1}{2\sqrt{2}} d\sqrt{C\omega} \cos\Theta \bar{E}_{\text{(eff)}}$$

#### For trapped ions

$$\mathcal{H}_{\text{int}} = e\vec{E}_{(\text{eff})} \cdot \vec{x}$$

$$= \sum_{n} \frac{eE_{(\text{eff})}^{n}}{\sqrt{2m_{\text{ion}}w_{r}^{n}}} \hat{a}_{n}^{\dagger} e^{-i\omega_{r}^{n}t} + h.c.,$$

$$\eta \equiv \frac{1}{2\sqrt{2}} \frac{eE_{\text{(eff)}}}{\sqrt{m_{\text{ion}} w_r^n}}$$

# Radiative Decays of Dark Matter

$$\mathcal{H} = \omega |e\rangle \langle e| + 2\eta \sin(E_{\gamma}t) \left( |e\rangle \langle g| + |g\rangle \langle e| \right)$$

$$\psi_q(t) \simeq \cos \eta t$$
,  $\psi_e(t) \simeq \sin \eta t$ 

$$p_{g\to e}(t) = |\psi_e(t)|^2 \simeq \sin^2 \eta t$$

$$p_* \equiv p_{g \to e}(\tau) \simeq (\eta \tau)^2$$

- Signals:  $N_{\text{sig}} = p_* \times N_{\text{try}}$ , where  $N_{\text{try}} = n_q \times n_{\text{rep}}$
- Backgrounds
  - Uniform 0.1% readout error:  $10^{-3} \times N_{\rm trv}$
  - -Thermal noise:  $e^{-\omega/T} \times N_{\rm trv}$ , where  $T \sim 30~{\rm mK}$

# Dark matter decay

$$\mu X_1^{\mu} X_2^{\nu} \tilde{F}_{\mu\nu} \qquad \Gamma(X_2 \to X_1 + \gamma) = \frac{\mu^2}{96\pi} \frac{(m_2^2 - m_1^2)^3 (m_2^2 + m_1^2)}{m_2^5 m_1^2}$$

$$\rho_{\rm DM} \approx m_2 \, n_2 \,, \qquad \approx \frac{\mu^2}{48\pi} \frac{(\Delta m^2)^3}{m_2^5}, \qquad \Delta m^2 \ll m_1^2 \lesssim m_2^2$$

#### Bound on life time

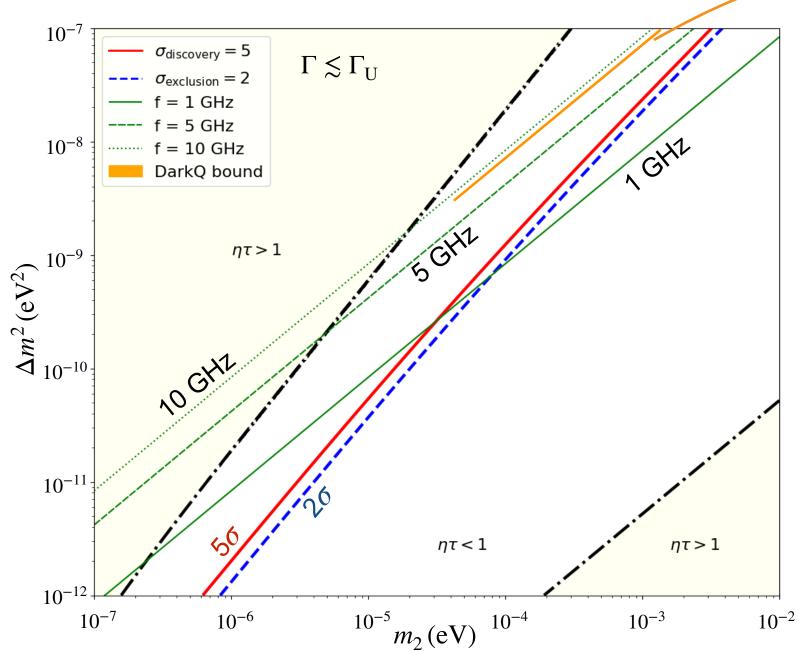
$$\Gamma \lesssim \Gamma_{\rm U} = 2.299 \times 10^{-18} \,\rm s^{-1}$$
  $\left(\mu_{\rm max}^{\rm Uni}\right)^2 \approx 48\pi \, m_2^2 \left(\frac{m_2}{\Delta m^2}\right)^3 \Gamma_{\rm U}$ 

$$p_* \simeq p_*^0 \times \cos^2 \Theta \left( \frac{V_{\text{eff}} \rho_{\text{DM}}}{0.45 \,\text{GeV} \,\text{cm}^{-3}} \right) \left( \frac{\Delta m^2}{m_2^2} \right) \left( \frac{d}{100 \,\mu\text{m}} \right)^2 \left( \frac{C}{0.1 \,\text{pF}} \right) \left( \frac{f}{1 \,\text{GHz}} \right) \left( \frac{\tau}{100 \,\mu\text{s}} \right)^3$$

$$p_*^0 = 0.069$$

$$f \simeq 1.2 \text{ GHz} \times \left(\frac{\Delta m^2}{10^{-10} \text{ eV}^2}\right) \left(\frac{10^{-5} \text{ eV}}{m_2}\right)$$

Dark matter decay



DarQ

$$\mu = \mu_{\text{max}}^{\text{Uni}}$$

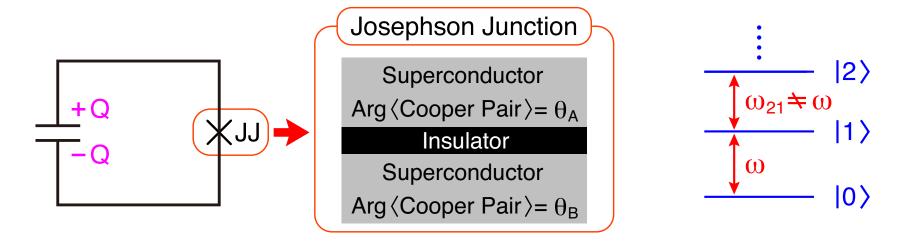
$$n_q = 1$$

$$\tau = 100 \,\mu s$$

$$V_{\rm eff} = 1$$

14 seconds data collection for each frequency

# Transmon qubit: Capacitor + Josephson junction (JJ)



$$H_0 = \frac{1}{2C}Q^2 - J\cos\theta \simeq \frac{1}{2}\frac{C}{(2e)^2}\dot{\theta}^2 - J\cos\theta \quad \text{with } \theta = \theta_B - \theta_A$$

- Transmon qubit has discrete energy levels
  - $-|0\rangle$  and  $|1\rangle$  can be used as  $|g\rangle$  and  $|e\rangle$ , respectively
  - Transmon qubits are commonly used in today's quantum computers

# Transmon qubits

Transmon qubit couples to external electric field

Capacitor 
$$\left\{\begin{array}{c|c} & +Q \\ \hline & +Q \\ \hline & -Q \end{array}\right\}$$
  $\Leftrightarrow H_{\mathrm{int}} = QdE^{(\mathrm{ext})}$ 

• Charge operator in the transmon limit:  $CJ \gg (2e)^2$ 

$$Q \simeq \frac{C}{2e}\dot{\theta} \simeq \sqrt{\frac{C\omega}{2}} \left( |g\rangle\langle e| + |e\rangle\langle g| \right)$$

- |g⟩ ↔ |e⟩ transition could occur, if there is additional electric field!
  - This is not possible, since qubits are inside some cavity.

## DarQ bounds

$$\bar{E}_{(\text{eff})} = \sqrt{\frac{\Gamma \mathcal{T} n_2 \Delta m^2}{2m_2 \varepsilon_0}} \qquad \rho_{\text{DM}} \approx m_2 n_2$$

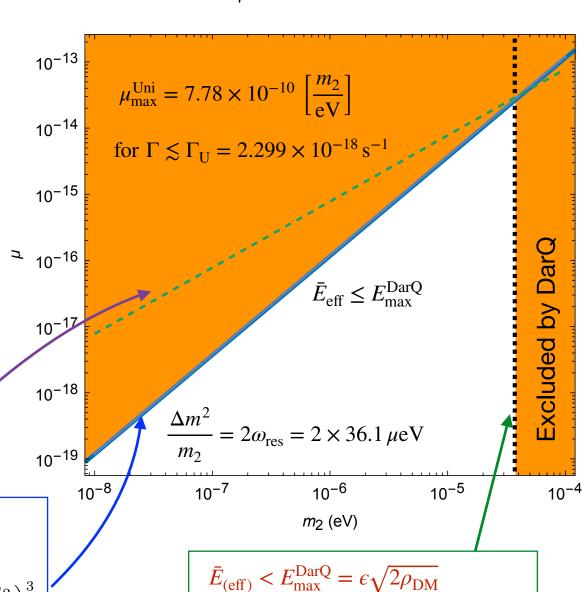
$$E_{\gamma} = \frac{\Delta m^2}{2m_2} = \omega_{\rm res}^{\rm DarQ} = 36.1 \ \mu \text{eV}$$

$$f_{\rm res}^{\rm DarQ} = \frac{\omega_{\rm res}^{\rm DarQ}}{2\pi} = 8.74 \text{ GHz}$$

$$\Gamma \lesssim \Gamma_U = 2.299 \times 10^{-18}\,\mathrm{s}^{-1}$$

$$\left(\mu_{\rm max}^{\rm Uni}\right)^2 \approx 48\pi \, m_2^2 \left(\frac{m_2}{\Delta m^2}\right)^3 \Gamma_{\rm U}$$

$$\mu \le \mu_{\text{max}}^{\text{Uni}} = 7.78 \times 10^{-10} \times \left(\frac{m_2}{\text{eV}}\right)$$



$$\Gamma(X_2 \to X_1 + \gamma) \approx \frac{\mu^2}{48\pi} \frac{(\Delta m^2)^3}{m_2^5}$$

$$\mu^2 < \frac{12\pi\epsilon^2\varepsilon_0}{(\omega_{\rm res}^{\rm DarQ})^4\mathcal{T}}m_2^3 = 1.46 \times 10^{-14} \times \left(\frac{m_2}{\rm eV}\right)^3$$

$$E = 2.63 \times 10^{-15} \,\mathrm{eV^2} \approx 1.35 \times 10^{-17} \,\mathrm{T} \approx 4 \times 10^{-9} \,\mathrm{V/m}.$$

$$m_2 = \frac{\Gamma \mathcal{T} \omega_{\text{res}}^{\text{DarQ}}}{2\varepsilon_0 \epsilon^2} = 4.15 \times 10^{-5} \text{ eV}$$
2508.0913

### A simplified Setup: signal-sensor interaction

- Core setup for many quantum sensing protocols in HEP (Details vary, but the essential physics is often similar)
- Sensor: A Two-Level Quantum System
  - A qubit as a simple example
  - Two states: Ground 0 and Excited 1
  - Can be a physical qubit, a cavity mode (n = 0, n = 1) etc.

- Signal: A Weak Classical Field
  - E.g., wave-like DM, high-frequency GWs
  - Drive transitions from  $|0\rangle$  to  $|1\rangle$
  - Interaction Hamiltonian:  $H_I = \epsilon \left(\cos \alpha \, \sigma_X + \sin \alpha \, \sigma_Y\right)$
  - $\epsilon$ : Signal strength (the quantity to be estimated)
  - α: Signal phase (often stochastic/random)

- The Goal to estimate the signal strength  $\epsilon$ .
  - 1. Evolve: System evolves from  $|0\rangle$  (ground state of free Hamiltonian) under  $H_I$ . For a weak signal  $\epsilon t \ll 1$ ,  $|\psi(0)\rangle = |0\rangle \longrightarrow |\psi(t)\rangle = U(t)|\psi(0)\rangle \approx |0\rangle ie^{i\alpha}\epsilon t|1\rangle$
  - 2. Measure: Project  $|\psi(t)\rangle$  onto  $|0\rangle$  and  $|1\rangle$ . Probability of finding  $|1\rangle$ :  $p_1 = \left|\langle 1|\psi(t)\rangle\right|^2 = \epsilon^2 t^2$

# Advantages of Quantum Sensing

- Classical sensing: typically for strong signals
- Quantum sensing: significant advantages for weak signals
- Key quantum features for sensing
  - Fundamental limits from zero-point fluctuations
  - Enhanced sensitivity through entanglement, surpassing classical limits
- Promising applications in fundamental physics, where signals are often extremely weak and changing in time with unknown frequencies.
  - Dark matter searches
  - Neutrino transition magnetic moment

### Quantum Enhancement of the Signal Rate

 $U_{\rm DM}$  induces pure phase rotation of its eigenstates

E.g. for 
$$\alpha = 0$$
:  $U_{\rm DM} \simeq \begin{pmatrix} 1 & i\delta \\ i\delta & 1 \end{pmatrix}$  with  $\delta \equiv \eta \tau$ 

$$\Rightarrow U_{\rm DM} |\pm\rangle = e^{\pm i\delta} |\pm\rangle \quad \text{with} \quad |\pm\rangle \equiv \frac{1}{\sqrt{2}} (|g\rangle \pm |e\rangle)$$

$$\Rightarrow U_{\rm DM}^{\otimes N_{\rm q}} |+\rangle^{\otimes N_{\rm q}} = e^{iN_{\rm q}\delta} |+\rangle^{\otimes N_{\rm q}}$$

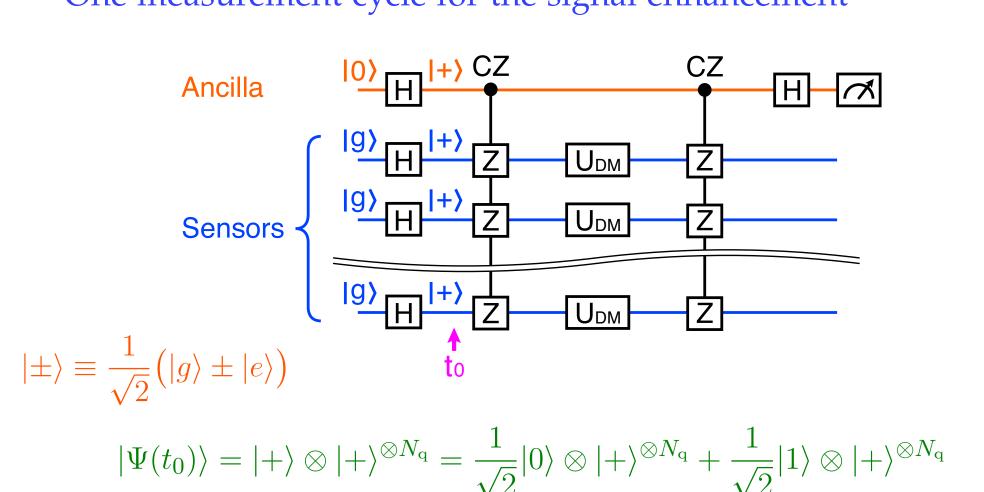
We can design quantum operations to enhance the signal

⇒ Quantum enhanced parameter estimation [Giovannetti, Lloyd, Maccone ('04)]

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL

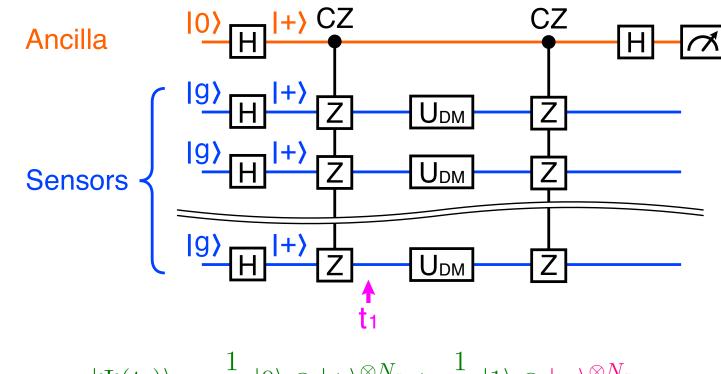
### Quantum Enhancement of the Signal Rate

One measurement cycle for the signal enhancement



Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL

#### One measurement cycle for the signal enhancement



$$|\Psi(t_1)\rangle = \frac{1}{\sqrt{2}}|0\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} + \frac{1}{\sqrt{2}}|1\rangle \otimes |-\rangle^{\otimes N_{\mathbf{q}}}$$

Controlled Z gate

$$Z|\pm\rangle=\pm|\mp\rangle$$

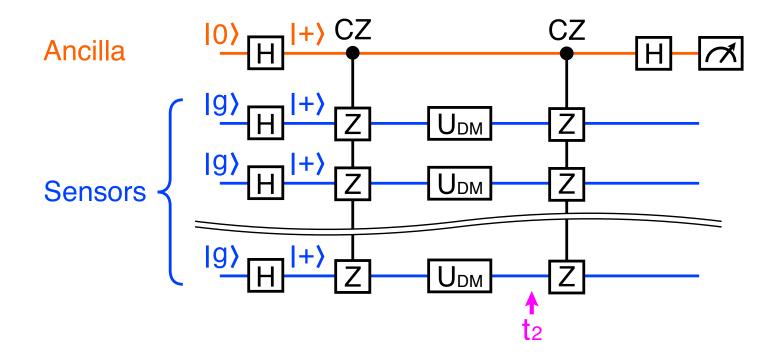
$$CZ = |0\rangle\langle 0| \otimes \mathbf{1} + |1\rangle\langle 1| \otimes Z$$

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL

$$\Rightarrow \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes |+\rangle \xrightarrow{CZ} \frac{1}{\sqrt{2}} |0\rangle \otimes |+\rangle + \frac{1}{\sqrt{2}} |1\rangle \otimes |-\rangle$$

### Quantum Enhancement of the Signal Rate

One measurement cycle for the signal enhancement

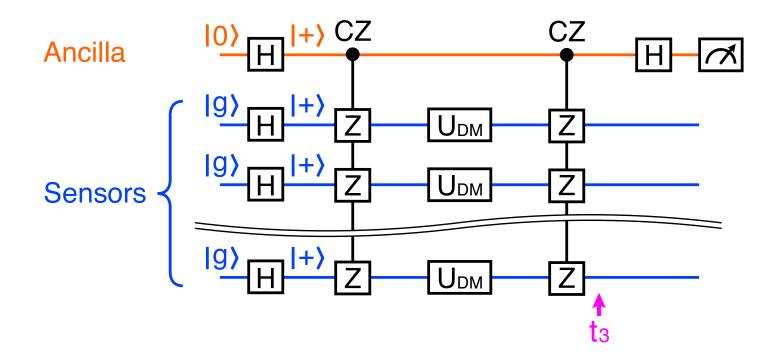


$$|\Psi(t_2)\rangle = \frac{1}{\sqrt{2}} e^{iN_{\mathbf{q}}\delta} |0\rangle \otimes |+\rangle^{\otimes N_{\mathbf{q}}} + \frac{1}{\sqrt{2}} e^{-iN_{\mathbf{q}}\delta} |1\rangle \otimes |-\rangle^{\otimes N_{\mathbf{q}}}$$

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL

### Quantum Enhancement of the Signal Rate

One measurement cycle for the signal enhancement



$$|\Psi(t_3)\rangle = \frac{1}{\sqrt{2}} e^{iN_{q}\delta} |0\rangle \otimes |+\rangle^{\otimes N_{q}} + \frac{1}{\sqrt{2}} e^{-iN_{q}\delta} |1\rangle \otimes |+\rangle^{\otimes N_{q}}$$
$$= \left(\cos N_{q}\delta |+\rangle + i\sin N_{q}\delta |-\rangle\right) \otimes |+\rangle^{\otimes N_{q}}$$

Shion Chen, Hajime Fukuda, Toshiaki Inada, Takeo Moroi, Tatsumi Nitta, Thanaporn Sichanugrist, 2024 PRL