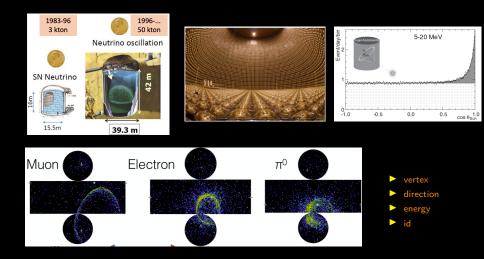
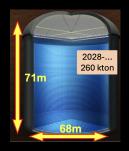
Hyper-Kamiokande

Federico Nova

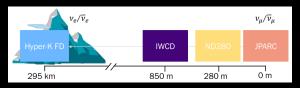
CPNR 2025



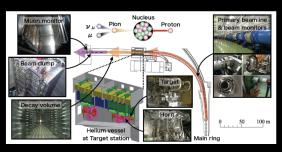
Outline:


- 1. detector
- 2. physics program

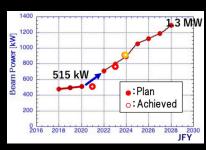
Kamiokande family



Hyper-Kamiokande detector



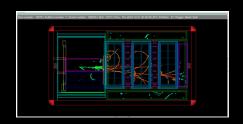
	SuperKamiokande	Hyper-Kamiokande	
site	Mozumi	Tochibora	
(rock overburden) ID PMTs	$^{(1\ km)}$ \sim $11 k$	(600 m) ∼20k	
photo-coverage	(50 cm) 40%	(50 cm) 20%	
OD PMTs	2k	$ imes$ 2 single p.e. efficiency $3.6 \frac{k}{}$	
mass	(20 cm) 50 <mark>kton</mark>	(8 cm) 260 <mark>kton</mark>	
(fiducial mass)	(22.5 kton)	(188 kton)	


- ▶ 8× SK fiducial volume
- improved photo-sensors
- begin data taking 2028

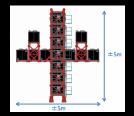
J-PARC neutrino beamline

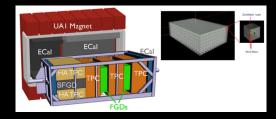


- ightharpoonup narrow-band neutrino beam ($E \approx 600 \ \mathrm{MeV}$)
- ▶ beam power to reach 1.3 MW (T2K ran stably at 800 kV in 2024)
 - upgrade main ring RF system: $2.6
 ightarrow 3.3 \cdot 10^{14} \; {
 m protons/pulse}$
 - improved horns power: $250 \rightarrow 320 \text{ kA}$
 - increase repetition rate (1.35 ightarrow 1.16 sec/cycle)
 - \sim 10% increased ν flux at HK

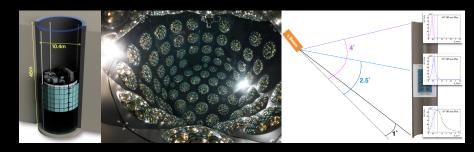


near detector complex (280 m downstream)

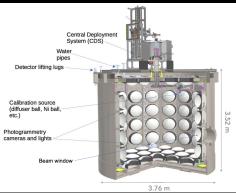

- monitor flux before oscillations
- measure cross-sections
- essential to tune fits and reduce systematics
- ▶ interaction dominated by CCQE
 - → single ring
 - \rightarrow kinematic reconstruction of E_{ν}
- interaction rates uncertainty 3%
 - \rightarrow systematic errors 5-6% in T2K
 - must be reduced to 3% for HK

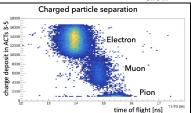


near detector complex (280 m downstream)



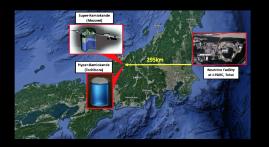
- on-axis beam monitor (Fe + scintillator),
 0.3 mrad already achieved in T2K
- off-axis magnetized detectors to identify wrong-sign bkg
- 2024 upgrades: TOF detectors, high-angle TPCs, scintillator superFGD
- improvements: finer granularity and wider solid angle


intermediate water-Cerenkov detector (IWCD)



- ► 640 t water Cerenkov cylinder (like FD
- ▶ 368 ID 8 cm multiPMTs (+ 368 OD)
- ▶ 850 m downstream (reduce pile-up wrt ND)
- located on surface in 50 m pit
- movable to sample $(1^{\circ}, 4^{\circ})$ off-axis angles (2.5°) in HK)
- match the flux between near and far detectors
- bdirect measurement of ν_e/ν_μ cross-section as a function of energy (main systematic in δ_{CP})
- **measure** intrinsic ν_e and NC components (more abundand off-axis)

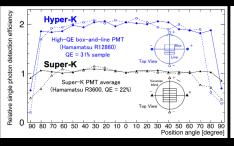
prototype tested @ CERN

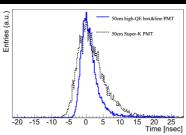


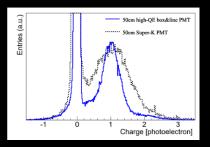
- IWCD half-sized prototype (same photosensors, calibration and water system)
- data taking 2024-2025 (including Gd phase)
- operated in CERN T9 (East Hall) beam line
- ▶ particles: $e^{\pm}, \mu^{\pm}, \pi^{\pm}, p^{+}$, tagged γ
- ightharpoonup momentum: $0.2-1.1~{\rm GeV/c}$
- beam detectors provide PID, calorimetry and triggering

Hyper-Kamiokande far detector site

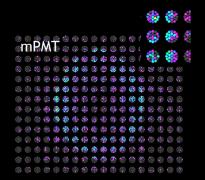
same choices as T2K:


- 295 km baseline
- $ightharpoonup 2.5^{\circ}$ off-axis angle


HK will be started while SK keeps running



ID photosensors: 50 cm PMTs

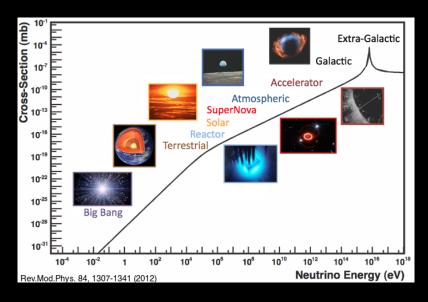


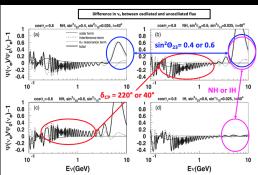
- 20k 50 cm Hamamatsu B&L PMT
- wrt SK: 2× single p.e. efficiency
- ➤ 2× increased charge (35%, 50% in SK) and time resolution (1.1 ns transit time spread, 2.1 ns in SK)
- 2× increased pressure resistance (70 m water depth)
- 6 kHz dark rate
- pressure-resistant acrylic cover

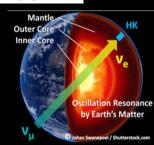
ID photosensors: 800 mPMTs

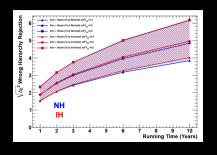
- module with 19 3" PMTs
- high granularity and good time resolution (0.6 ns TTS, $2 \times$ better than B&L)
- directional sensitivity from local coincidences
- small magnetic field sensitivity
- combined with 50 cm PMTs in HK and adopted also in IWCD

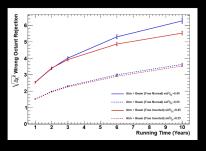
PMTs status


- mass production of 50 cm PMTs ongoing
- >15k PMTs have been delivered
- screen testing signal and visual inspection ongoing at Kamioka and Hamamatsu
- testing of covers using mock-up frame in Mediterranean sea

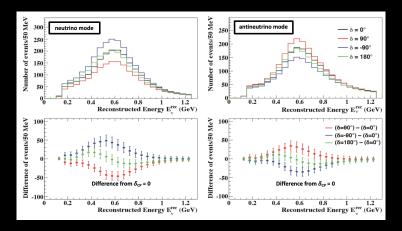


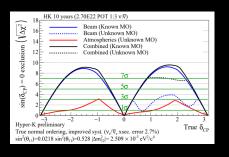

very wide physics program

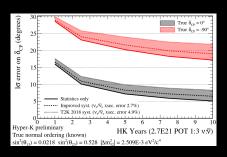

atmospheric neutrinos



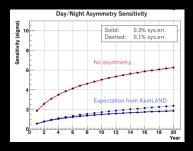
- wide energy range (peak 1 GeV) and long travel distance
- precision mixing parameters
- > ν_e flux enhanced depending on mass ordering, θ_{23} and δ_{CP}

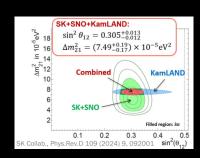

mass ordering and octant sensitivity

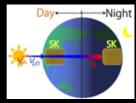

- ightharpoonup earth matter effect for u's passing through core allow measurement of $\delta_{\rm CP}$, mass ordering and θ_{23} octant
- lacktriangle measure mass ordering at 3σ for all values of $heta_{23}$
- determine octant at 3σ for $|\theta_{23} 45^{\circ}| \geq 2^{\circ}$


beam: CP violation

- $ightharpoonup
 u_e$ appearance in u_μ beam
- ► T2K disfavour CP conservation ($\delta = 0, \pi$) at $\sim 3\sigma$ level
- ightharpoonup effect of δ_{CP} clearly seen in reconstructed spectra (10 years, NH)

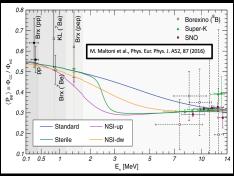

beam: CP violation

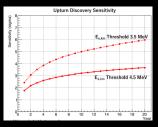




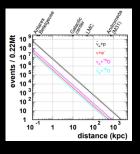
- ▶ assume 10 years exposure, 1:3 ν to $\bar{\nu}$ beam operation, known mass ordering, 3-4% systematic uncertainty
- ightharpoonup exclude $\sin\delta_{\sf CP}=0$ at 5σ for 60% of range
- lacktriangle measure $\delta_{\sf CP}$ with $\pm (7^\circ, 22^\circ)$ for $\sin \delta_{\sf CP} = (0, 1)$
- sensitivity paper: https://arxiv.org/abs/2505.15019

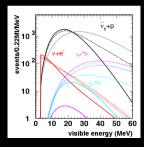
solar neutrinos





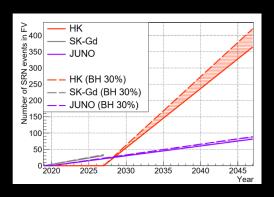
- ▶ regeneration of ν_e due to earth matter effect \rightarrow higher ν_e flux at night
- \blacktriangleright can reject no day/night asymmetry to 5σ after 10 years
- \blacktriangleright also, resolve 1.5σ tension between solar experiments and KamLAND on Δm^2_{21}


solar neutrinos



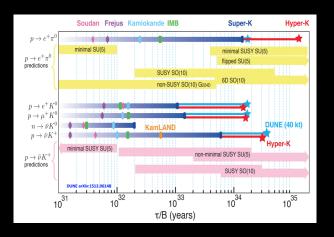
- solar neutrinos up-turn: increase in low-energy survival probability
- $>3-5\sigma$ measurement of up-turn spectrum after 10 years

supernovae neutrinos: $\bar{\nu}_e + p^+ \rightarrow e^+ + n$



SN location	n events/tank		
galactic centre (10 kpc)	70k		
SN1987a (50 kpc)	3k		
Andromeda (0.8 Mpc)	10		

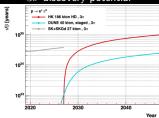
- first and only detection of supernova neutrinos SN1987a (11 \pm 8 events @ 50 kpc)
- ► 50-80k events for a 10 kpc supernova → neutrino properties, SN mechanism
- sensitive to 1 Mpc (Andromeda)
- ▶ 1.3° pointing for SN alert

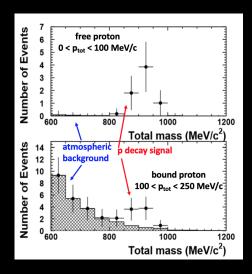

diffuse supernova neutrino background

- neutrinos from all SN since the beginning of the universe
- relevant for stellar formation rate, heavy elements synthesis, black-hole formation
- lacktriangle expect 4 events/year with neutron tagging, 4σ discovery after 10 years
- ▶ 16-30 MeV window limited by spallation backgrounds

also: dark matter annihilation in the sun \rightarrow neutrinos!

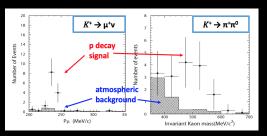
proton decay

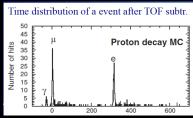


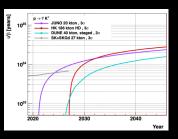

- predicted by many GUT models
- water Cerenkov sensitive to several decay modes
- suppress backgrounds with improved neutron tagging
- ightharpoonup reach 10^{35} y lifetime

proton decay: $p^+ o e^+ + \pi^0$

golden channel

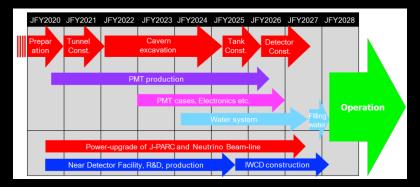

- favoured by many GUTs
- ► HK can see all products
- background-free search thanks to neutron tagging $(n+p^+ \rightarrow d + \gamma, E_{\gamma} = 2.2 \text{ MeV})$
- $ightharpoonup 3\sigma$ discovery potential





proton decay: $p^+ \rightarrow \bar{\nu} + K^+$

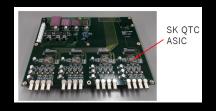
- ► K^+ below Cerenkov threshold (visible in DUNE), detect via decay $K^+ \rightarrow \mu^+ + \nu$ (64%) or $K^+ \rightarrow \pi^+ + \pi^0$ (21%)
- prompt gamma de-excitation, followed by μ^+ from K^+ decay (12 ns) and e^+ from μ^+ decay (2 ms)
- $ightharpoonup 3\sigma$ discovery


many other modes improved by 1 order

excavation status

timeline

- design report released 2018
- cavern excavation finished 2025
- water filling 2027
- data taking 2028


summary

- ► Hyper-Kamiokande is the next-generation neutrino experiment
 - ► 8× larger than SK
 - improved photo-sensors
 - upgraded 1.3 MW beam
 - ▶ intermediate water Cerenkov to reduce systematic errors
- rich physics program
 - precise neutrino oscillation: δ_{CP} , mass ordering
 - astrophysics: solar neutrinos, supernovae etc.
 - new physics: proton decay, dark matter ...
- ► data taking will start in 2028

Back-up slides

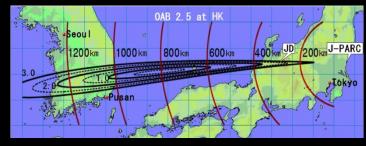
Electronics

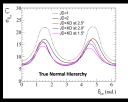
- electronics timing resolution < PMT TTS</p>
- frontend electronics and HV module in water
- timing delivered by GPS
- communication via fiber (200 m)
- large buffer for SN burst
- prototype developed with: SK QTC ASIC (charge to time), FPGA TDC 4GHz
- electronics resolution: 0.2 ns at 1 p.e., 10% charge resolution at 1 p.e., 2000 p.e. range with 1% linearity

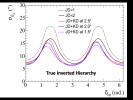
mPMT electronics:

- 0.4 ns for 1 p.e., 0.1 ns for larger pulses
- charge resolution: 0.05 to 25 p.e.
- power consumption: 3-4 W/mPMT for HK (driven by water circulation requirements), 5-10 W/mPMT for IWCD

Systematic errors

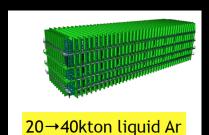

- statistical error will be 3% in HK
- require 3% systematic error on interaction rates (through upgraded ND280 and IWCD)


Source of uncertainty	ν_{μ} CC	$\nu_{\rm e}$ CC	$\bar{\nu_{\mu}}$ CC	$\bar{\nu}_{\rm e}$ CC
Flux and common cross sections				
(w/o ND280 constraint)	10.8%	10.9%	11.9%	12.4%
(w/ ND280 constraint)	2.8%	2.9%	3.3%	3.2%
Unconstrained cross sections	0.8%	3.0%	0.8%	3.3%
SK	3.9%	2.4%	3.3%	3.1%
FSI + SI(+ PN)	1.5%	2.5%	2.1%	2.5%
Total				
(w/o ND280 constraint)	11.9%	12.2%	13.0%	13.4%
(w/ ND280 constraint)	5.1%	5.4%	5.2%	6.2%

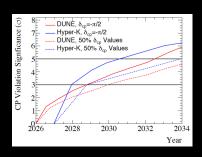


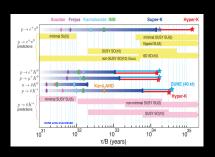
Systematic Source	Required Precision	For Which Measurement	Detector	Achievable Precision
Beam Direction	0.6 mrad (4 MeV shift)	δ_{op} precision at $sin(\delta_{op})\!\sim\!0$ Δm^2_{32} precision	INGRID	<0.3 mrad (<2 MeV)
Removal (binding) energy	4 MeV*	δ_{cp} precision at $\sin(\delta_{cp}) - 0$ Δm^2_{32} precision	IWCD, ND280	2.6 MeV (IWCD on O) -1 MeV (ND280 on C)**
High angle measurement (cosθ<0.2)	4%	CP Violation, $\delta_{\rm sp} \ precision \ at \ sin(\delta_{\rm sp}){\sim}0$	IWCD, ND280	<4% statistical precision in both detectors
Beam rate monitoring	~1% per day	General monitoring of beam quality	INGRID	<0.5% per day for neutrinos and antineutrinos
Neutron Multiplicity	TBD	Atmospheric neutrino Nucleon decay	IWCD, ND280	<5% IWCD <4% ND280
μπ ⁰ cross section & neutron multiplicity	TBD	en ⁰ proton decay	IWCD	TBD

Second tank in Korea



- 1100 km
- 2nd oscillation maximum
 - higher precision on δ_{CP}


HyperK and DUNE



- HK: 188 kton water, 1.3 MW beam
- ▶ DUNE: $20 \rightarrow 40$ kton liquid Ar, $1.2 \rightarrow 2.4$ MW beam

HyperK and DUNE

- ightharpoonup similar sensitivities for δ_{CP}
- similar sensitivities for proton decay
 - DUNE has excellent event reconstruction, high efficiency, low backgrounds, golden $p^+ \rightarrow \bar{\nu} + K^+$
 - \blacktriangleright HK has larger volume and covers several decay modes, golden $p^+ \to e^+ + \pi^0$
- supernovae
 - **DUNE** observes $\nu_e \rightarrow$ time and flavour profile of collapse
 - ► HK has larger mass (188 kton vs 20/40 kton fiducial mass)

Hyper-Kamiokande collaboration

