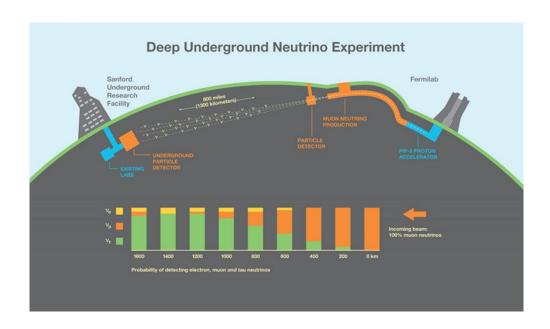
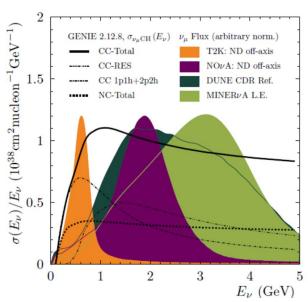


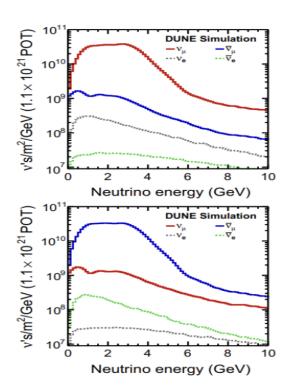
Deep Underground Neutrino Experiment

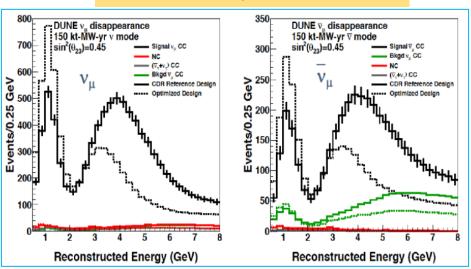

Kim Siyeon Chung-Ang University


CPNR Workshop October 24~27, 2025

Long-baseline oscillation

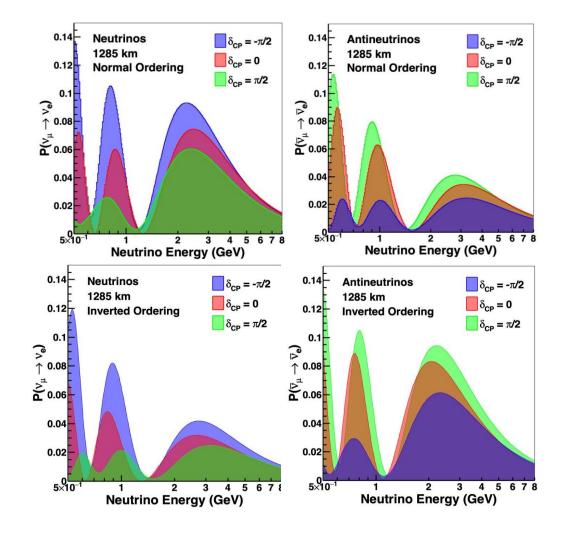
Experiment	Beam Source	Detector (threshold)	Interaction	Flavors	Physics	Status
DUNE	PIP-II NuMI (0.5~10 GeV)	L-Ar Time Projection Chamber, (a few MeV)	NC, CC, ES	all	Oscillation Interaction	Construction

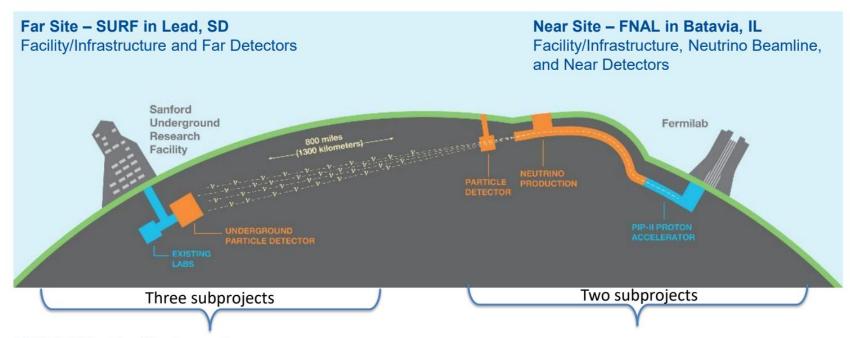



Long-baseline oscillation

- 1285-km baseline
- Neutrino energy range Sub GeV ~ 10 GeV
- Neutrino mode(FHC) and antineutrino mode(RHC)
- Appearance of $v_e(\overline{v_e})$ and disappearance of $v_\mu(\overline{v_\mu})$ at FD

Beam Optimization



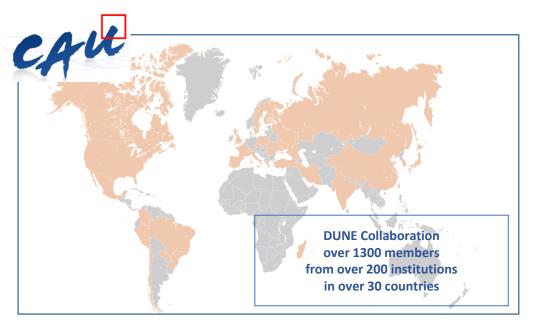

Neutrino-antineutrino asymmetry: $P(\nu_{\mu} \rightarrow \nu_{e})$ vs. $P(\nu_{\mu} \rightarrow \nu_{e})$

$$\mathcal{A}_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \sim \frac{\cos \theta_{23} \sin 2\theta_{12} \sin \delta_{\text{CP}}}{\sin \theta_{23} \sin \theta_{13}} \left(\frac{\Delta m_{21}^{2} L}{4E_{\nu}}\right) + \text{matter effects}$$

LBNF/DUNE Project - Delivered at Two Sites through Five Subprojects

- FSCF-EXC Far Site Excavation
- FSCF-BSI Far Site Building & Site Infrastructure
- FDC Far Detectors and Cryogenic Infrastructure

- NSCF+B Near Site Conventional Facilities + Beamline
- · ND Near Detectors


3 20 May 2024

Macier | FDC Update

Construction Timeline

Chung-Ang University

: Kim, Siyeon (Professor, IR)

: Gwon, Sunwoo (Research Fellow)

: Masud, Mehedi (Research Fellow)

: Park, Juseong (Grad Student)

: Kim, Sunhong (Grad Student)

: Nam, Hokyeong (Grad Student)

: Park, Yujin (Undergraduate)

Jeon-Buk National University

: Shin, Seodong (Professor, IR)

Jeju National University

: Ko, Young Ju (Professor, IR)

Seoul national Univ. of Technology

: Park, Myeonghun (Professor, IR)

7

DUNE Management Group

Technical Coordination & Consortia

FD1: Eric James
FD2: Steve Kettell
DAQ | APA | Photon Detector
HV | TPC Electronics | CRP
Top Drift Electronics | Calibration

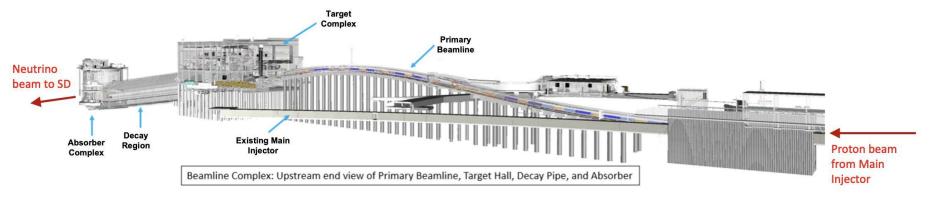
ND: Hiro Tanaka ND LAr | TMS | SAND

Physics Coordination & Working Group

Long-baseline | Atmospheric & Exotics

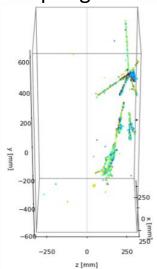
FD sin/reco | ND Prototype analysis

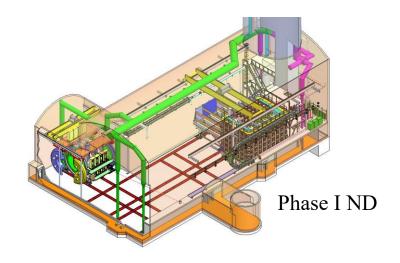
Neutrino Interactions + Uncertainties

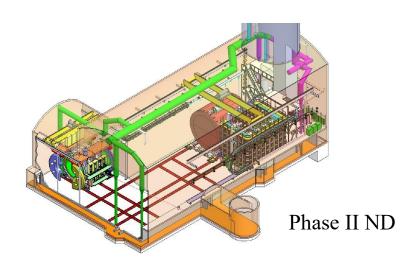

Beam BSM | ND sim/reco | Low Energy

Calibration | ProtoDUNE Analysis

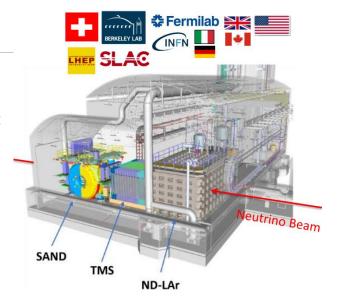
LBNF: intense beam, underground facilities and infrastructure


- Construction of the beamline enclosure and the ND enclosure begins in 2025.
- Conventional facilities design is completed.
- Initial site work is completed.
- 1.2 MW neutrino beam from PIP-II proton beam, upgradeable to 2.4 MW



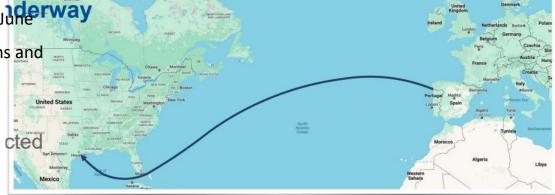

Near Detector

- Innovative design enables the firstever operation of a liquid argon near detector in the world's most intense neutrino beam.
- Near detector critical to precision neutrino science.
- Near detector prototype installed in neutrino beam at Fermilab. Taking data this spring.


Cosmic data in ND-LAr prototype in Switzerland

Phase 1 Detector:

- Moveable LArTPC + Muon Spectrometer:
 - ND-LAr: 7x5 array of modular 1x1x3 m³ LArTPCs with pixel readout
 - TMS: Magnetized steel range stack
 - DUNE-PRISM: ND-LAr+TMS move up to 28.5 m off-axis
- SAND: On-axis magnetized detector
 - KLOE solenoid + electromagnetic calorimeter
 - GRAIN (LAr target with optical readout) + Inner Tracker



Far Detector Cryostat

Departed Spain in May Arrive in Houston in June way

Warm structure 2,500 ton (3rd barrier, fastens and fittings)

First components for DUNE experiment in Lead

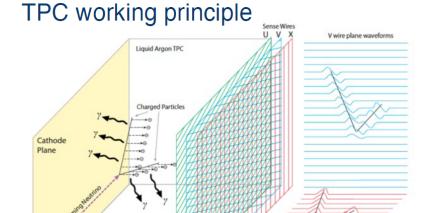
The first of what will eventually be 2,000 pieces of the cryostats for the deep underground neutrino experiment arrived in Lead last week. This spring members of the LBNF/ DUNE team will work with Sanford Lab employees to begin tests to ensure the massive pieces can be safely and efficiently lowered down the Ross Shaft. Photo by Stephen Kenny

By WENDY PITLICK Black Hills Pioneer

LEAD — The first components for the deep underground neutrino experiment have arrived in Lead, and starting this spring the LBMF/DUNE project team and officials with the Sanford Lab will begin tests to ensure cryostats for the experiment can be safely lowerd down

That's because the components are massive. The

first piece is more than 8 tons and 40 feet by 3 feet by 1.5 feet. The second piece is nearly 6 tons and 18 feet by 11 feet. Both pieces form just a corner of the massive cryostat for the deep underground neutrino experiment. When they're lowered down the Ross Shaft, they will have a clearance of about 3 inches on each side. Jolie Macier, DUNE far detector and cryogenics project manager from Fermilab, said the size of the pieces present challenges that members of the collaboration


wanted to work out before it is time to actually assemble the cryostats underground. Besides the massive size of the first piece, the smaller piece, referred to as the "L beam," has its own set of complications, Macier

"It has a center of gravity that is a challenge," she said. "That's why we wanted some extra time to be able

DUNE COMPONENTS Pg 6

The Single-Phase LAr-TPC

- Ionization electrons [~5 fC/cm] drift to the anode in pure LAr & uniform E-field (~500 V/cm)
 - Few mm pitch and ~MHz sampling frequency

X wire plane waveforms

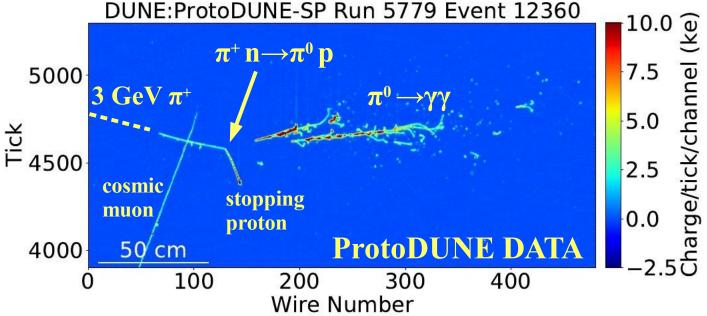
- 3D via multiple 2D view (wire# vs drift time)
- high imaging capabilities → kinematic reconstruction with mm-scale spatial resolution
- Intrinsically excellent Calorimetry and Particle Identification (dE/dx) capability
- Prompt scintillation light (@128 nm)
 - T = 0, trigger, calorimetry

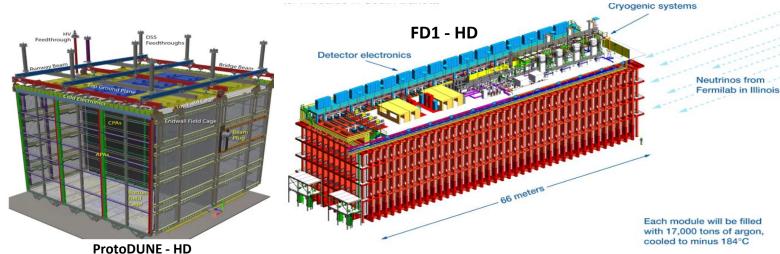
Dec. 10, 2021

LAr as radiation detection medium

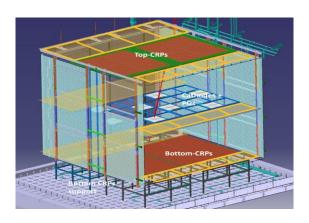
- Dense: 40% more than water
- Abundant primary ionization: 42 000 e⁻/MeV
- High electron lifetime if purified → long drifts
- High light yield: 40k y/MeV
- Easily available: ~1% of the atmosphere
- Cheap: \$2/L (\$3000/L for Xe, \$500/L for Ne)

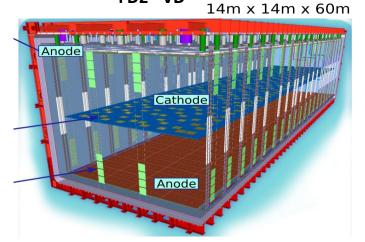
Technological challenges


- LAr continuous purification << 0.1 ppt O₂ eq. (>> 3 ms electron lifetime) for long drift
- Imaging & anode planes
- Very low noise front end amplifiers to detect ~ fC primary charge deposition
- Large area photon detectors sensitive to 128 nm wave length
- HV system to provide uniform/stable E-field in large drift volume
- Pioneered by ICARUS and adopted in present and next generation neutrino ezperiment (µBoone, SBND, DUNE)
 - DUNE: scaling to multi-kt size


LArTPC technology provides exquisite resolution

- Clean separation of v_u and v_e charged currents
- Precise energy reconstruction over broad E_v range
- High Resolution & Low thresholds:
 - sensitivity to few-MeV neutrinos, hadrons
 - excellent for LE neutrino and BSM Search

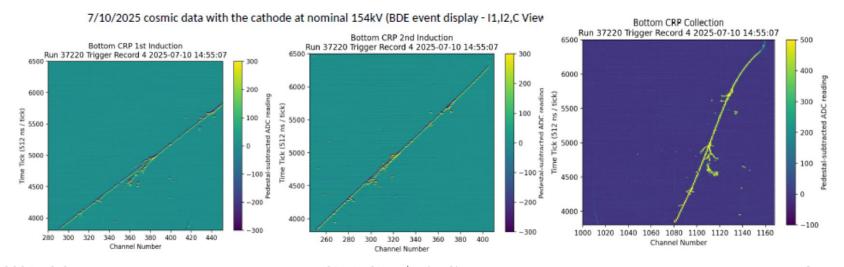


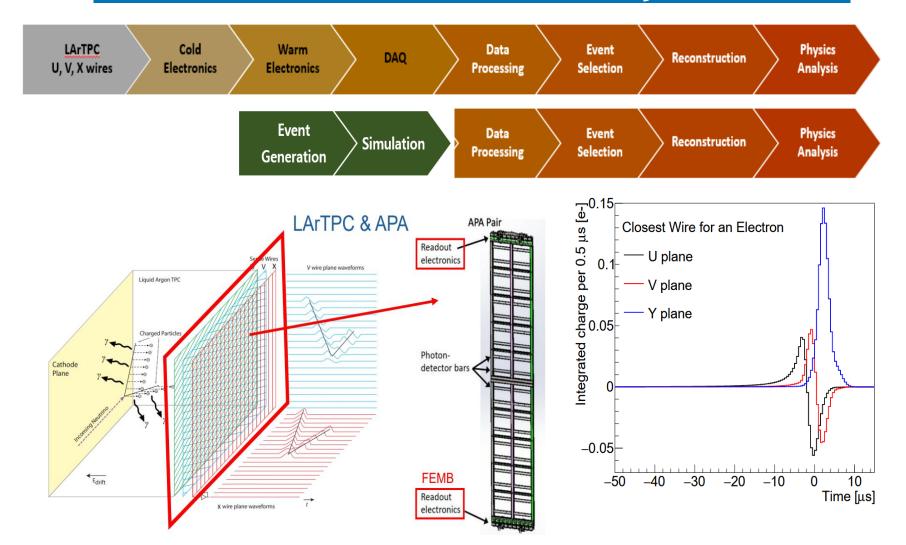

Liquid Argon Time Projection Chamber in ProtoDUNE

Each module will be filled with 17,000 tons of argon,

ProtoDUNE - VD

FD2 - VD




2025 ProtoDUNE Run-II (2단계) 가동, 실제 검출된 데이터 분석 실행 2026-2027 DUNE FD(원거리 검출기) 설치 20**2027-2028** DUNE FD 데이터 분석 실행 CPNR, CNU | Kim Siyeon

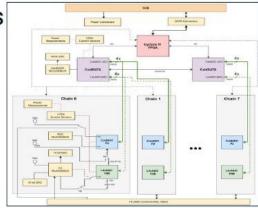
ProtoDUNE, DUNE FC as of Sept.2025

- NP04: Both beam and cosmic data available.
 2024 data being prepared for X-section and other physics.
- FD1 APA Production in UK and US | Cold electronics FEMB | HVS |
 PDS cold electronics | Photon Detector Module
- NP02 and FD2:
 NP02 operating, exposed to charge-particle beam, commissioning e-noise investigations, beam plug, PDs, PMT's, etc
 FD2 Started productions in France and US, Progress in PRRs

From Detection to Analysis

Cold Electronics Readout

COLDATA


LArASIC

❖ FEMB

- COLDATA configures and controls 4 COLDADCs and 4 LArASICs
- LArASIC provides front-end amplification
 - Four adjustable gain levels: 4.7, 7.8, 14, 25 mV/fC
- Front-End Motherboard (FEMB) integrates All ASICs :
 - 8 x LArASIC, 8 x ColdADC, 2 x COLDATA

Quality Control and Performance Evaluation of Cold Electronics for the DUNE Far Detector

NAM Hokyeong 1, MASUD Mehedi1, and KIM Suhyeon1 (1Department of Physics, Chung-Ang University)

The Deep Underground Neutrino Experiment (DUNE) is a next-generation neutrino oscillation experiment designed to investigate fundamental properties of neutrinos. To achieve optimal performance, Cold Electronics (CE) has been chosen as the readout solution for the Far detector. These electronics must reliably operate at liquid argon (LAr) temperatures throughout the detector's expected lifetime of over 20 years, as maintenance or replacement will not be feasible. A comprehensive quality control (QC) procedure was implemented to ensure the electronics meet specifications and are free of defects, utilizing the DUNE ASIC Test (DAT), Robotic Testing Setup (RTS), and Cryogenic Test System (CTS). Three key components of the front-end readout system-COLDATA, the Front-End Motherboard (FEMB), and LArASIC-undergo rigorous QC procedures to assess their performance. We present a new selection criteria to identify high-quality components.

Cold Electronics

* COLDATA

DUNE Overview

Fermilab to the Sanford Underground Research Facility

(LArTPCs), enabling precise 3D imaging of neutrino interactions

Each module integrates advanced CE systems for signal amplification and

- DUNE is designed to study neutrino oscillations over a 1,300 km baseline from
- COLDATA configures and controls 4 COLDADCs and 4 LArASICs

♦ LArASIC

- The Far Detector comprises massive Liquid Argon Time Projection Chambers
 - LArASIC provides front-end amplification
 - Front-End Motherboard (FEMB) integrates All ASICs : 8 x LArASIC, 8 x ColdADC, 2 x COLDATA
 - Four adjustable gain levels: 4.7, 7.8, 14, 25 mV/fC

RMS noise

RT v.s LN

Quality Control & Test Setup

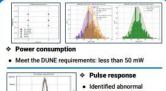
digitization at cryogenic temperatures

Three QC test setups are implemented:

PASS	139	965 yeld	
Fall SPI communitation with FE	1:		
Harading Insures	1	PASS OC after re-olign	
Foor contact between sucket & chip	1	PASS after retrict	
Facini SPUSS programming	2		
PLL Band Range	10	PRAS (17 chips) with new selection criteria	
Total	PASSED	176	
100.00	FAILED	16	

- Supports automated testing at both room temperature (RT) and Liquid Nitrogen temperature (LN)
- Utilizes an EPSON robotic arm to handle CE chips precisely and
- Enables repeatable, and scalable QC for high-volume testing

- Performs full-module testing under RT and LN conditions
- Validates cold operation as a fully assembled unit
- Repeated testing ensures performance consistency and mechanical endurance


COLDATA analysis suggests a new chip selection criterion for future QC

FEMB testing validates the durability and reliability of the QC test setup

LArASIC results demonstrate successful noise reduction at cryogenic temperature

These results support the readiness of CE components and provide a foundation for

Performance Evaluation from QC Data

- response in a specific readout channel
- Requires further inspection of mechanical integrity
- Phase-Locked Loop (PLL) lock range
- . 86% vield with conservative criteria
- 96% yield achieved with the updated criteria

FEMB QC testing at various Gain settings Demonstrated stable performance under repeated thermal cycling between RT and LN

consumption

RT v.s LN

Noise reduce by more than half at LN and integrated

The average RMS noise decreases from 11.19 ADC to 7.17

Power consumption decreases from 98.01 mW to 92.65 mW

ADC (36% reduction) → lower than requirements (1000 ENC)

non-linearity < 1%

COLDATA

Acknowledgement

- We thank the BNL Cold Electronics Group & CAU NuLa Group for this support and collaboration
- Special thanks to Shanshan Gao, Vladimir Tishchenko Lingvun Ke for their invaluable guidance
- We also acknowledge the resource support provided

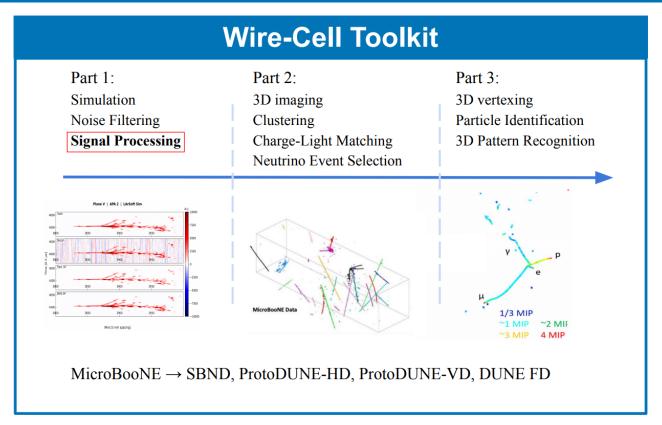
CAU NULA

Finalizing an internal report on performance evaluation

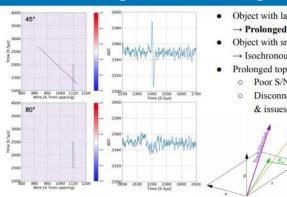
Cold Flectronics **Working Group** making a paper for publication

future QC efforts across collaborating institutions

2025-10-24


Wire-Cell and DUNE/ProtoDUNE Analysis

NAM Hokyeong¹, PARK Yujin¹, PARK Juseong¹, KIM Sunhong¹, <u>SIYEON Kim</u>¹ (1Department of Physics, Chung-Ang University)


Liquid Argon Software:

Simulation and reconstruction packages for LArTPC detectors

- Event generation: Genie, CORSIKA, CRY, SingleGen module
- Simulation: GEANT4, FLUKA
- Reconstruction: Wire-Cell, Pandora

DNN Signal Processing Motivation

- Object with large θ xz angles
 - → Prolonged topology
- Object with small θ xz angles
 - → Isochronous topology
- Prolonged topologies lead:
 - Poor S/N ratio in induction wire planes
 - Disconnected objects in reco.
 - & issues in 3D imaging and clustering

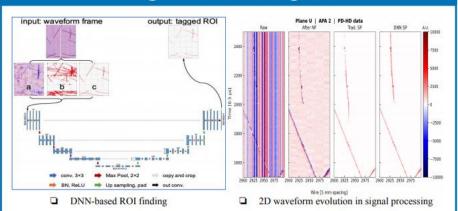
X axis - electric field direction Y axis - vertical upward

Z axis - beam direction

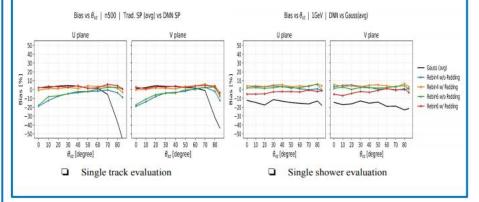
arXiv: 2007.06722

Memory Usage Optimization

- Memory profiling using Valgrind Massif tool
- The cause of excessive memory usage
 - ML inference peak (blue)
 - duplication of data saving pipeline (red)


Strategy

- Lightweight MobileNetV3 architecture as backbone → less number of parameters
- Dedicated filter for duplicated pipeline
 - → Keep only the necessary data


pdhd_run027673_0000_bi

- DUNE computing environment recommends keeping memory usage below 4 GB → DNN SP was not applicable yet
- After the optimization, the memory usage is reduced from 10.0 GB to 3.6 GB
- Through an additional memory optimization (chunking for ML inference), the memory usage can be further reduced

DNN Signal Processing Results

- Input features for ML training: loose low frequency filter noise, multi-plane coincidence
- U-Net like architecture: encoder decoder
- DNN-based signal processing (DNN SP) demonstrated
 - better charge reconstruction performance in prolonged topology
 - o capability to truncate "tear drop"
- Performance evaluation showed the DNN SP could be a better option specifically in prolonged topology

Conclusion

- Wire-Cell Toolkit has been actively developed for LArTPC experiments
- DNN SP showed better charge reconstruction performance
- Memory optimization made it possible to use the DNN SP in the actual DUNE workflow
- DNN SP becomes more important as cosmic backgrounds are prolonged in ProtoDUNE-VD

Special Welcome

- New member Institutes in 2025
 - Jeju National University (IR: Ko, Young Ju)
 - Seoul National University of Technology (IR: Park, Myeonghun)
- Expecting a transition in DUNE experiment and a promotion in K-DUNE in upcoming years,

Please do not postpone joining DUNE.