Constraining dark matter from strong phase transitions in a Lmu-Ltau model: Implications for neutrino masses and muon *g*–2

Sarif Khan

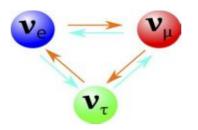
Chung-Ang University, Seoul

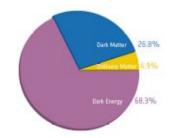
K-Neutrino Symposium 2025

Based On JHEP 02 (2017) 123 JHEP 10 (2024) 186

25-27 Jun 2025

Asia/Seoul time zone





Problems in the SM

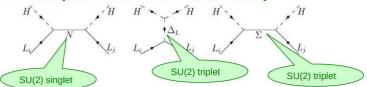
- SM fails to explain neutrino mass and mixings.
- SM doesn't have a DM candidate.
- SM can not explain the observed baryon asymmetry.
- The origin of smallness of the θ -parameter.

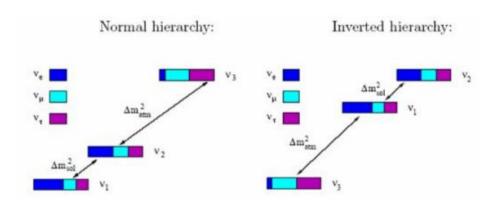
Neutrino Mass and open problems

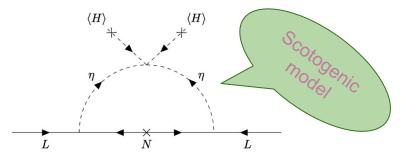
- Mass ordering unknown
- Which octant for θ_{23}
- What is the value of the CP-phase δ?
- Origin of small neutrino mass?

Dirac or Majorana??

Neutrino Masses


⇒Leptogenesis?


Majorana mass (Violate Lepton number) \cdot \circ \circ


e.g., Lepton No. violating interactions in BSM, R-parity violation in SUSY, etc.

$$\mathcal{L}_{Weinberg} = \frac{1}{2} \frac{1}{M_{\nu}} L_i L_j H H$$

See-saw (Add new fermions/scalars)

Particle Set up

Gauge	Baryonic Fields	Vector-like	Lepton Fields			Scalar Fields		
Group	(Q_L^i, u_R^i, d_R^i)	ψ_L, ψ_R	(L_L^e, e_R, N_R^e)	$(L_L^{\mu}, \mu_R, N_R^{\mu})$	$(L_L^{\tau}, \tau_R, N_R^{\tau})$	Φ	Φ'	Φ_{DM}
$U(1)_{L_{\mu}-L_{\tau}}$	0	q_{ψ}	0	1	-1	0	1	q_{DM}

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{scalar} + \mathcal{L}_{\psi} + \mathcal{L}_{Z'} + \mathcal{L}_{N},$$

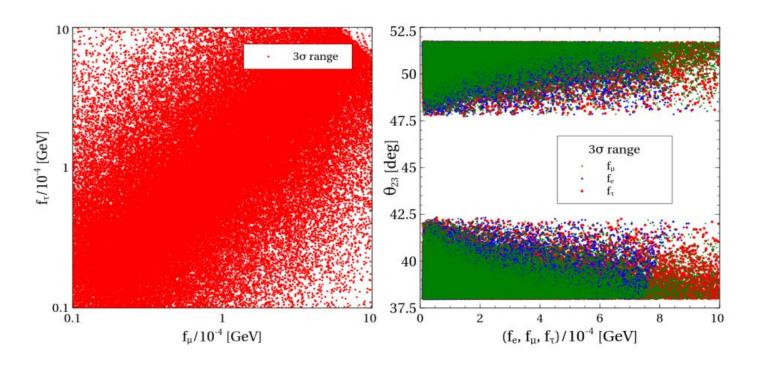
$$D_{\mu}X \equiv \left(\partial_{\mu} - ig_{Z'}Q(X)Z'_{\mu}\right)X, \qquad \mathcal{L}_{N} = \sum_{i=e,\,\mu,\,\tau} \frac{i}{2}\bar{N}_{i}\gamma^{\mu}D_{\mu}N_{i} - \frac{1}{2}M_{ee}\bar{N}_{e}^{c}N_{e} - \frac{1}{2}M_{\mu\tau}(\bar{N}_{\mu}^{c}N_{\tau} + \bar{N}_{\tau}^{c}N_{\mu}) - \frac{1}{2}h_{e\mu}(\bar{N}_{e}^{c}N_{\mu} + \bar{N}_{\mu}^{c}N_{e})\Phi'^{\dagger} - \frac{1}{2}h_{e\tau}(\bar{N}_{e}^{c}N_{\tau} + \bar{N}_{\tau}^{c}N_{e})\Phi' - \sum_{i=e,\,\mu,\,\tau} y_{i}\bar{L}_{i}\tilde{\Phi}N_{i} + h.c.$$

$$M_R = egin{pmatrix} M_{ee} & rac{v'}{\sqrt{2}}h_{e\mu} & rac{v'}{\sqrt{2}}h_{e au} & rac{v'}{\sqrt{2}}h_{e au} \ rac{v'}{\sqrt{2}}h_{e\mu} & 0 & M_{\mu au}e^{i\xi} \ rac{v'}{\sqrt{2}}h_{e au} & M_D = egin{pmatrix} y_e & 0 & 0 \ 0 & y_\mu & 0 \ 0 & 0 & y_ au \end{pmatrix} \, , & m_N \simeq M_R \, , \ m_N \simeq M_R \, , \end{pmatrix}$$

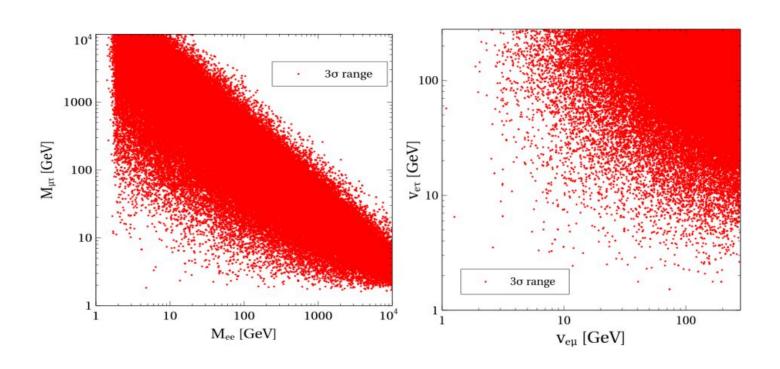
Mass matrix and PMNS

$$m_{\nu} = \frac{1}{2 \, p} \begin{pmatrix} 2 \, f_{e}^{2} M_{\mu \tau}^{2} e^{i\xi} & -\sqrt{2} \, f_{e} f_{\mu} \, h_{e\tau} v_{\mu \tau} & -\sqrt{2} \, f_{e} f_{\tau} \, h_{e\mu} v_{\mu \tau} \\ -\sqrt{2} \, f_{e} f_{\mu} \, h_{e\tau} v_{\mu \tau} & \frac{f_{\mu}^{2} \, h_{e\tau}^{2} \, v_{\mu \tau}^{2} \, e^{-i\xi}}{M_{\mu \tau}} & \frac{f_{\mu} \, f_{\tau}}{M_{\mu \tau}} (M_{ee} \, M_{\mu \tau} - p \, e^{-i\xi}) \\ -\sqrt{2} \, f_{e} f_{\tau} \, h_{e\mu} v_{\mu \tau} & \frac{f_{\mu} \, f_{\tau}}{M_{\mu \tau}} (M_{ee} \, M_{\mu \tau} - p \, e^{-i\xi}) & \frac{f_{\tau}^{2} \, h_{e\mu}^{2} \, v_{\mu \tau}^{2} \, e^{-i\xi}}{M_{\mu \tau}} \\ \end{pmatrix}, \qquad \begin{bmatrix} \boldsymbol{\nu}_{\mathbf{e}} \\ \boldsymbol{\nu}_{\mu} \\ \boldsymbol{\nu}_{\tau} \end{bmatrix} = \begin{bmatrix} \boldsymbol{U}_{\mathbf{e}1} & \boldsymbol{U}_{\mathbf{e}2} & \boldsymbol{U}_{\mathbf{e}3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{bmatrix} \begin{bmatrix} \boldsymbol{\nu}_{1} \\ \boldsymbol{\nu}_{2} \\ \boldsymbol{\nu}_{3} \end{bmatrix}.$$

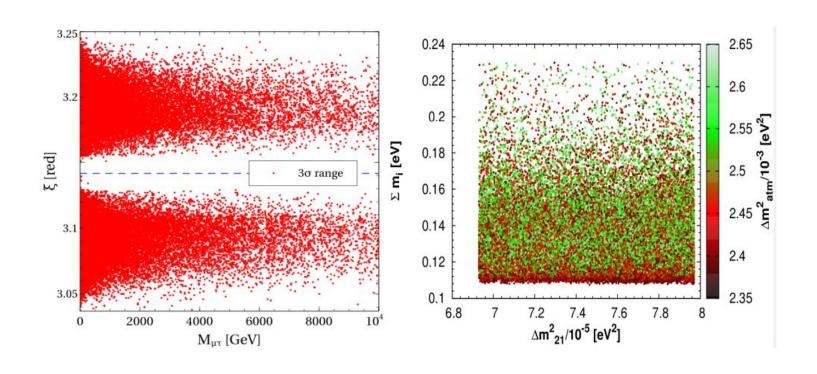
$$\left[egin{array}{c}
u_{
m e} \\
u_{\mu} \\
u_{ au} \end{array}
ight] = \left[egin{array}{ccc} U_{
m e1} & U_{
m e2} & U_{
m e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{array}
ight] \left[egin{array}{c}
u_1 \\
u_2 \\
u_3 \end{array}
ight].$$

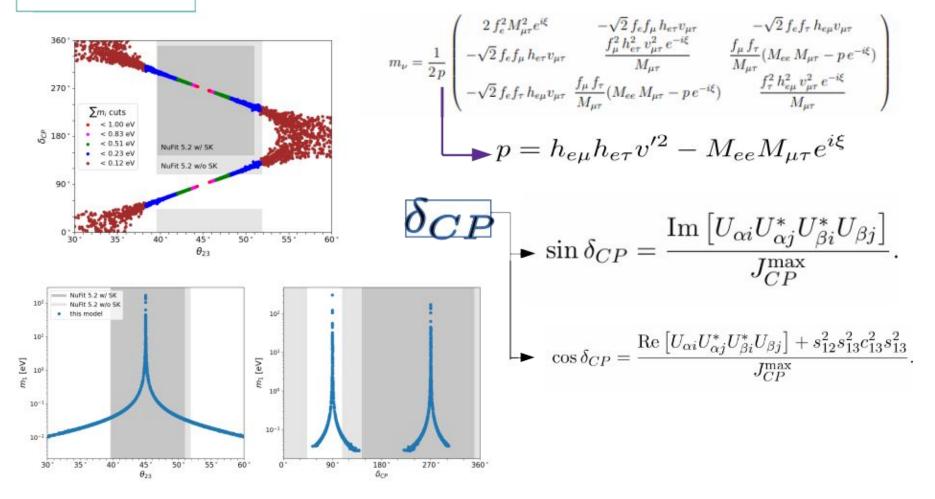

$$\begin{array}{lll} 0 & \leq & \xi \, [\mathrm{rad}] & \leq & 2\pi \; , \\ 1 & \leq & M_{ee}, \, M_{\mu\tau} \, [\mathrm{GeV}] \; \leq & 10^4 \; , \\ 1 & \leq & V_{e\mu}, \, V_{e\tau} \, [\mathrm{GeV}] \; \leq & 280 \; , \\ 0.1 & \leq & \frac{(f_e, \, f_\mu, \, f_\tau)}{10^{-4}} \, [\mathrm{GeV}] \; \leq & 10 \; . \end{array} \qquad \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\mathbb{CP}}} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\mathbb{CP}}} \end{bmatrix}$$

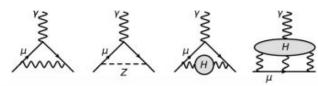
$$\begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{\mathbb{CP}}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{\mathbb{CP}}} & c_{23}c_{13} \end{bmatrix},$$


Global Fit

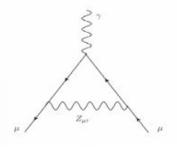
		Normal Ord	dering (best fit)	Inverted Ordering ($\Delta \chi^2 = 6.1$)			
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range		
23	$\sin^2 \theta_{12}$	$0.308^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$	$0.308^{+0.012}_{-0.011}$	$0.275 \rightarrow 0.345$		
c da	$\theta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$		
пеп	$\sin^2 \theta_{23}$	$0.470^{+0.017}_{-0.013}$	$0.435 \rightarrow 0.585$	$0.550^{+0.012}_{-0.015}$	$0.440 \rightarrow 0.584$		
Isom	$\theta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9^{+0.7}_{-0.9}$	$41.5 \rightarrow 49.8$		
IC24 With SA atmospheric data	$\sin^2 \theta_{13}$	$0.02215^{+0.00056}_{-0.00058}$	$0.02030 \to 0.02388$	$0.02231^{+0.00056}_{-0.00056}$	$0.02060 \to 0.02409$		
	$\theta_{13}/^{\circ}$	$8.56^{+0.11}_{-0.11}$	$8.19 \rightarrow 8.89$	$8.59^{+0.11}_{-0.11}$	$8.25 \rightarrow 8.93$		
	$\delta_{\mathrm{CP}}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \to 335$		
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$		
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$		

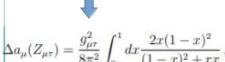

Allowed Region

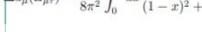

Allowed Region


Allowed Region

Neutrino mass




Muon g-2

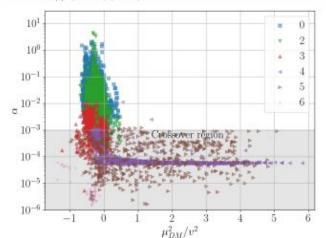


- The Magnetic moment of a particle with spin is given by $\mu = g \frac{e}{2m} \mathbf{S}$
- SM contribution to muon (g-2) includes QED, HVP, HLbL and EW Processes
- Among the four contribution HVP comes from the experimental measurement.
- SM predicts with all the contribution $a_{\mu}^{SM}=116591810(43)\times 10^{-11}(0.37ppm)$
- Expt. Measurements at CERN, BNL and FNAL delivers world average value $a_{\mu}^{Exp}=116592061(41)\times 10^{-11}(0.35ppm)$
- Difference between the experimental and theoretical value predicts

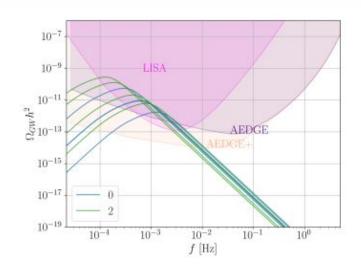
$$\Delta a_{\mu} = a_{\mu}^{Exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11}$$

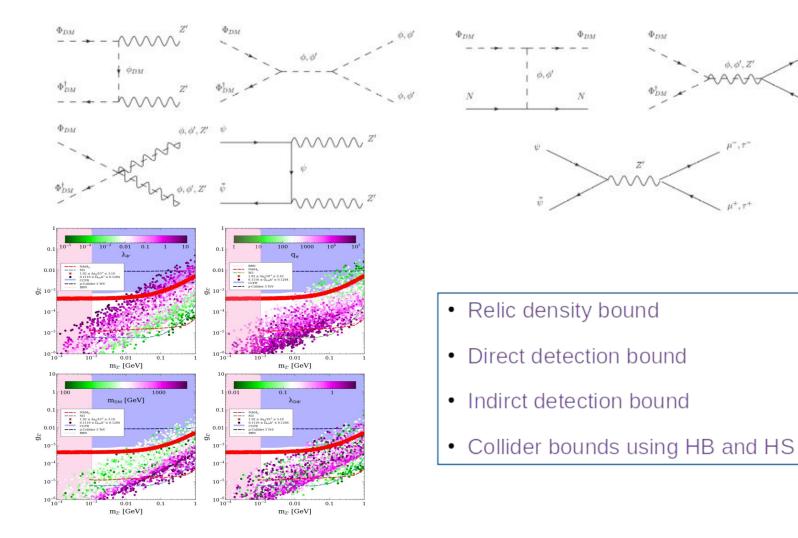
Discrepancy in VHP

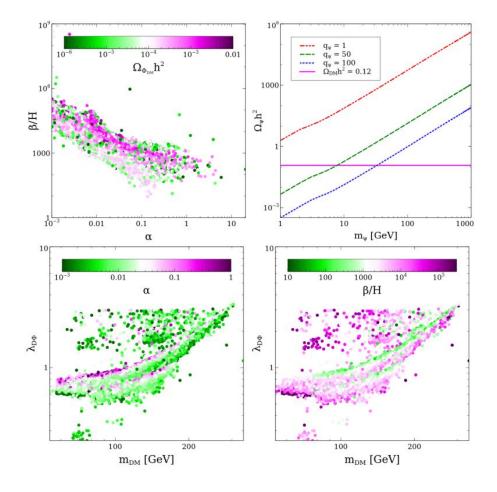
- → Recent measurement in the Lattice computation measure the VHP contribution which differ from the experimental value by 2.1 sigma.
- → This measuement reduces the significance of the discrepancy between the experimental and theoretical value to 1.5 sigma.
- → New measurement of VHP contribution by CMD-3 experiment reduces the theoretical and experimental gap to 2.4 sigma.
- The new measurement differs from the previous measurement of the same experiment as well as the other experiments.
- → We need further confirmation between any conclusion on the muon g-2 anomaly
- → The present work tried to explain the muon g-2 discrepancy observed at the FNAL and the theoretical value


Gravitational Waves

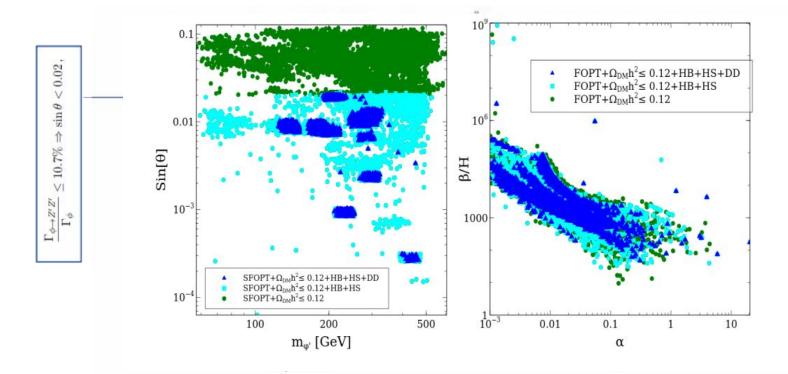
$$V_T(\phi, \phi', \chi, T) = \frac{T^4}{2\pi^2} \sum_i d_i J_{\mp} \left(\frac{m_i(\phi, \phi', \chi)}{T} \right)$$


$$V_{\rm CW}(\phi,\phi',\chi) = \sum_i (-1)^{F_i} \frac{d_i}{64\pi^2} \left[m_i^4(\phi,\phi',\chi) \left(\log \frac{m_i^2(\phi,\phi',\chi)}{m_{0i}^2} - \frac{3}{2} \right) + 2 m_i^2(\phi,\phi',\chi) m_{0i}^2 \right] \,,$$


$$V_{eff}(\phi, \phi', \chi, T) = V_0(\phi, \phi', \chi) + V_{CW}(\phi, \phi', \chi) + V_T(\phi, \phi', \chi, T).$$

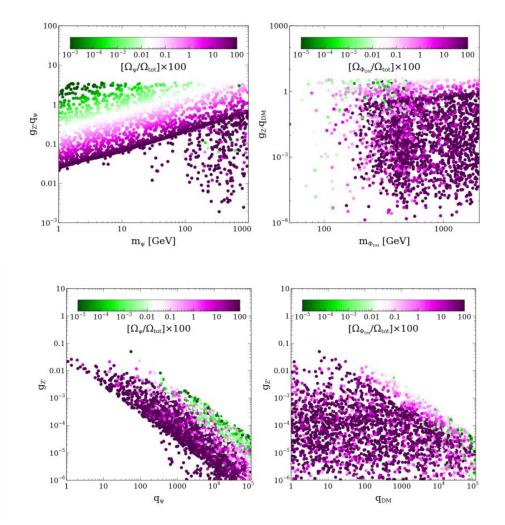

$$\begin{split} V_0(\Phi,\Phi',\Phi_{\mathrm{DM}}) = & V_{\mathrm{SM}}(\Phi) + \mu_{DM}^2 \Phi_{DM}^\dagger \Phi_{DM} + \lambda_{DM} (\Phi_{DM}^\dagger \Phi_{DM})^2 \\ & + \mu_{\phi'}^2 \Phi'^\dagger \Phi' + \lambda_{\phi'} (\Phi'^\dagger \Phi')^2 \\ & + \lambda_{D\phi} (\Phi_{DM}^\dagger \Phi_{DM}) (\Phi^\dagger \Phi) + \lambda_{D\phi'} (\Phi_{DM}^\dagger \Phi_{DM}) (\Phi'^\dagger \Phi') \\ & + \lambda_{\phi\phi'} (\Phi'^\dagger \Phi') (\Phi^\dagger \Phi), \end{split}$$


direction	All	$\phi - \phi'$	$\phi - \chi$	$\phi' - \chi$	φ	ϕ'	χ
label	0	1	2	3	4	5	6

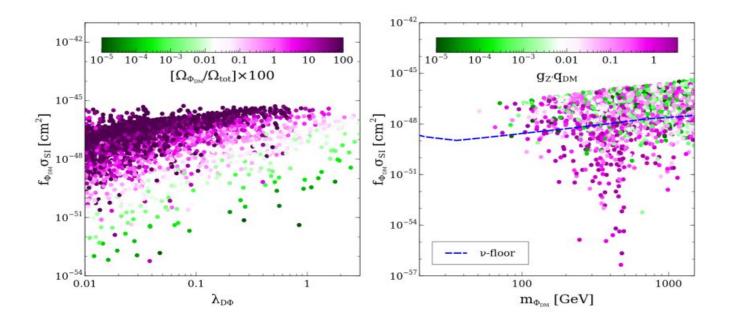


- → ULP shows the fraction of scalar DM which exhibits we can not go beyond DM RD 0.01
- → URP shows that fermion DM can accommodate the rest of the component
- → In the LLP, we have shown in the colorbar the GW parameters and for SFOPT we need quartic coupling larger

- In both the plots, we can see a large portion of parameter space is in conflict with the DMDD.
- We have chcked if DM RD is 1e-6 to 1e-5, only then it will be allowed from the DD which demand a second component DM.



- In the LP we see sharp upper cut on the mixing angle which is 0.02 coming from the Higgs invisible decay
- In the RP, we can see even after all the bounds we have more or less all the range of alpha and beta are allowed.


Conclusion

- The present model can explain the total amount of DM, neutrino mass, muon g-2 and SFOPT.
- DD demands the 1e-6 to 1e-5 dark matter relic density contribution but the rest of the component can come from the fermion DM.
- We find that the atmospheric angle 45 degree is not possible due to resonance nature in the lightest neutrino mass.
- We find some of the regimes which can be explored in future by GW are already ruled out by DD bound.
- Our model prefers Dirac CP phase peaked around 270 degree and 90 degree which is outside the current bound.

Thank You

- In the ULP, we see DM RD is inversely proportional qz q_psi but for mass above 100 GeV we see psi annihilation to sclar DM starts contributing
- In the URP, we do not see such correlation because Higgs mediated processes also contributes significantly
- In the LLP, we see night correlation between q_psi and g_Z but for the LRP we do not see such behaviour.

- LP shows the correlation between the quartic coupling and the SIDD times fraction of DM.
- If we move towards x-axis then we see reduction in DM fraction from the color variation due to the increment in the quartic coupling.
- In the RP, we have changed the x-axis with DM mass and random values of g Z q DM as see from the color variation.