HA Daehoon^a, *Hongjoo Kim^b, on behalf of AMoRE collaboration ^a Center for Underground Physics, institute for Basic Science (IBS), ^b Kyungpook National University E-mail: daehoonha@gmail.com, hongjooknu@gmail.com

Abstract

Less Muon

Studies of double beta $(2\nu\beta\beta)$ decay to various excited states in different isotopes provide valuable insights into nuclear structure models. The AMoRE, which utilizes an array of 100Moenriched CaMoO₄ and Li₂MoO₄ crystal scintillators, is advantageous for investigating $2\nu\beta\beta$ decay of ¹⁰⁰Mo to the excited states of ¹⁰⁰Ru.

In the AMoRE-I phase, we measured the half-life of $2\nu\beta\beta$ transition of ¹⁰⁰Mo to the 0_1^+ state of 100 Ru using a total of 16 crystal detectors, and the half-life value is (6.83 \pm 0.71 (stat) \pm 0.32 (sys)) × 10²⁰ years. The half-life limit for the $2\nu\beta\beta$ transition to the 2_1^+ state of ¹⁰⁰Ru is set as 2.5×10^{21} years (90% C.I.).

A prospective study of $2\nu\beta\beta$ decay to the excited states of ¹⁰⁰Ru has been conducted for AMoRE-II. Considering the increased crystal mass and measurement time, the error-to-signal ratio for the $2\nu\beta\beta$ decay of ¹⁰⁰Mo to the 0_1^+ state is expected to decrease significantly from 6.3% to 0.3%. The half-life sensitivity to the $2\nu\beta\beta$ decay of ¹⁰⁰Mo to 2_1^+ state of ¹⁰⁰Ru in AMoRE-II is estimated as limit $T_{1/2} \sim 1.20 \times 10^{23}$ years. The triple-crystal-hit conditions event can be measured in AMoRE-II, that will be useful for observing the pure elections energy distribution.

Study motivation: $2\nu\beta\beta$ decay to excited states of ¹⁰⁰Mo

Due to the dependence of the calculated NME on the nuclear structure model, experimentally measured half lives of $2\nu\beta\beta$ decay transitions to various energy states in different isotopes can provide valuable input for nuclear structure model studies.

Half life equation

Half life and NME of $2\nu\beta\beta$ decay

- 100 Mo has a natural abundance of 9.7% and can be enriched.
- Due to its high Q-value, the $2\nu\beta\beta$ (0⁺ \rightarrow 0₁⁺) decay of ¹⁰⁰Mo to ¹⁰⁰Ru has a measurable half-life.
- $2v\beta\beta$ decays to $\Delta J \neq 0$ excited states study can be sensitive to find the bosonic neutrino.

] A. S. Barabash, et al., Nucl. Phys. B 783, 90 (2007)

Half life table of $2\nu\beta\beta$ to ground state

	11 5
Nucleus	Average Value ($T_{1/2}^{2 u}$) [year]
⁴⁸ Ca	$5.3^{+1.2}_{-0.8}\times 10^{19}$
⁷⁶ Ge	$1.88 \pm 0.08 \times 10^{21}$
⁸² Se	$0.87^{+0.02}_{-0.01} \times 10^{20}$
⁹⁶ Zr	$2.3 \pm 0.2 \times 10^{19}$
¹⁰⁰ Mo	$7.06^{+0.15}_{-0.13}\times 10^{18}$
¹¹⁶ Cd	$2.69 \pm 0.09 \times 10^{19}$
¹³⁰ Te	$7.91 \pm 0.21 \times 10^{20}$
¹³⁶ Xe	$2.18 \pm 0.05 \times 10^{21}$
¹⁵⁰ Nd	$8.4 \pm 1.1 \times 10^{18}$

Half life table of $2\nu\beta\beta$ to excited state

Nucleus	Average Value ($T_{1/2}^{2 u}$) [year]
¹⁵⁰ Nd to (0 ₁ ⁺)	$1.2^{+0.3}_{-0.2} \times 10^{20}$
100 Mo to (0_1^+)	$6.7^{+0.5}_{-0.4} \times 10^{20}$

Theoretical and Experimental Physics, B Cheremushkinskaya 25, 117218 Moscow, Russia

AMoRE-I: Study of $2\nu\beta\beta$ decay to excited states

486.6 days of PROD data were analyzed.

- SE02 and LMO2 crystals were excluded.
- Only double crystal hit events were considered.
- Double crystal hit probability: 32.9%
- Triple crystal hit probability: 6.3%

Process

Data

- **Event selections**
 - **Calibrations**
 - Muon tagging **Energy calibration**
- **Position**
- Energy Signal time difference

Double-hit event energy distribution

Without other event selections

AMoRE-I results: Study of $2\nu\beta\beta$ decay the 0_1^+ state

Fit histogram

The log-likelihood fit with the Gaussian constraints

$$\mathcal{L} = \frac{Y^{N}e^{-Y}}{N!} \prod_{i}^{N} P_{i}^{total} \prod_{j}^{M} e^{-\frac{1}{2}\frac{p_{j}^{c}}{\sigma_{j}^{c}}}$$

$$P_{i}^{total} = \frac{1}{Y} \begin{pmatrix} Y_{540}P_{i,540}^{cb} + Y_{591}P_{i,591}^{cb} \\ +Y_{511}P_{i,511}^{cb} + Y_{583}P_{i,583}^{cb} + Y_{609}P_{i,609}^{cb} \\ +Y_{pol}P_{i}^{pol} \end{pmatrix}$$
where,

 $Y_{pol} = Y - (Y_{540} + Y_{591} + Y_{511} + Y_{583} + Y_{609})$

Results table of Study of $2\nu\beta\beta$ decay to excited states of ¹⁰⁰Mo

AMoRE-I	Results [$ imes 10^{20}$ year] \pm stat \pm sys
539.5 keV	6.57 \pm 0.91 \pm 0.34
591.8 keV	7.13 $\pm 1.10 \pm 0.32$
weighted average	6.83 \pm 0.71 \pm 0.32
Soudan(95)	6.1 ± 1.8
Soudan(99)	$9.3^{+2.8}_{-1.7}~\pm~1.4$
TUNL-ITEP(01)	$5.9^{+1.7}_{-1.1} \pm 0.6$
TUNL-ITEP(06)	$6.0^{+1.9}_{-1.1} \pm 0.6$
Modane(07)	5. $7^{+1.3}_{-0.9} \pm 0.8$
TUNL-ITEP(09)	$5.5^{+1.2}_{-0.8} \pm 0.3$
ARMONIA(10)	6. $9^{+1.0}_{-0.8} \pm 0.7$
Modane(14)	7.5 \pm 0 . 6 \pm 0 . 6
Average	6. $7^{+0.5}_{-0.4}$
CUPID-Mo(23)	7. 5 \pm 0 . 8 $^{+0.4}_{-0.3}$

A.S.Barabash et al (1995, 1999); Braeckeleeret al (2001); R.Amold et al (2007); M.F.Kidd et al (2009); P.Belli et al (2010); R.Amold et al (2014).

AMoRE-I results: Study of $2\nu\beta\beta$ decay to the 2_1^+ state

$2\nu\beta\beta$ decay to excited states of ¹⁰⁰Mo and AMoRE

The multi-crystal hit condition enabled by AMoRE's multi-detector structure offers an advantage for studying $2\nu\beta\beta$ decay to excited states.

Probability of a multi-crystal hit (Geant4 simulation)

Prospective study of $2\nu\beta\beta$ to excited states at AMoRE-II

Energy [keV]

- **Probability improvement**
- Probability of $2\nu\beta\beta$ to 0+ Double crystal hit: 33.4% (32.9%)
- Triple crystal hit: 21.5% (6.3%)
- Probability of $2\nu\beta\beta$ to 2+
- Double crystal hit: 32.2% (15.0%)
 - Triple crystal hit: 10.7% (1.3%)
 - Sensitivity for 2νββ to 2 Sensitivity of 2

Statistical improvement

- Ratio of the error to 540 keV peak count at $2\nu\beta\beta$ to 0+: ~0.3% (AMoRE-I: ~ 6.3%)
- The conceptual equation $N_{540 \ keV}^{2^{+}} = N_{540 \ keV}^{tot} - N_{540 \ keV}^{0^{+}}$ **Expected Half-life limit:** 1.20×10^{23} year(90% c.i.)

Summary study of 2vββ to excited states at AMoRE-II

Results [$\times 10^{20}$ year] \pm stat \pm sys AMoRE-I: 0_1^+ state $6.57 \pm 0.91 \pm 0.34$ 539.5 keV 7.13 \pm 1.10 \pm 0.32 591.8 keV weighted average 6.83 \pm 0.71 \pm 0.32 AMoRE-I: 2_1^+ state > 25 (90% c.i.)

Prospective study of 2νββ to excited states at AMoRE-II

- In AMoRE-II, we can observe the triple-hit signal generated by $2\nu\beta\beta$ to 0+.
- The statistical error of the half-life of 2vββ to 0+ will be reduced by approximately a factor of 0.05.
- The sensitivity of $2v\beta\beta$ to 2+ at AMoRE-II is $>1.20\times10^{23}$ year.