Introducing the DUNE-related posters at K-Neutrino 2025

Mehedi Masud Chung-Ang University Seoul, Korea

June, 2025 Chung-Ang University, Seoul, Korea

Deep Underground Neutrino Experiment (DUNE)

DUNE Posters (1. Kim Siyeon) Kim Siyeon 1. DUNE overview Dhanamanalada **Deep Underground Neutrino Experiment** KIM SIYEON¹ (¹Neutrino Lab (NULA), Department of Physics, Chung-Ang University) **CP** Violation 0.14 Neutrinos 0.14 Antineutrinos $\delta_{CP} = -\pi/2$ δ_{CP} = -π/2 1285 km 1285 km What is DUNE? $\delta_{CP} = 0$ δ_{CP} = 0 Normal Ordering 0.12 0.12 Normal Ordering $\delta_{CP} = \pi/2$ $\delta_{CP} = \pi/2$ 0.1 0.1 Physics Goals? (a) ↑ 0.08 () → ↑ 0.08 Detectors 2 0.06 D 0.06 0.04 0.04 Sensitivities 0.02 0.02 Korea DUNE activities 4 5 1 2 3 4 5 Neutrino Energy (GeV) Neutrino Energy (GeV)

4

DUNE Posters (2. Yujin Park)

Kim Siyeon

Computing

/Software

Yujin Park 2. Wirecell introduction

łokyeong Nam

Machine learning
signal processing

Yujin Park¹ (¹Department of Physics, Chung-Ang University)

DUNE Posters (3. Hokyeong Nam)

DUNE Posters (5. Juseong Park)

DUNE 4th module prototype WbLS

PARK Juseong¹ (¹Department of Physics, Chung-Ang University)

Hardware /Experiment

5.Water based liquid scintillator

- WbLS detector for DUNE FD module
- Trigger system & PMT calibration using 1t and 30t WbLS detector at BNL
- WbLS technology for future experiments

DUNE Posters (6. Suhyeon Kim)

Probing Large Extra Dimension at DUNE using Beam Tunes Suhyeon Kim **Chung-Ang University** Collaboration with Masud, Juseong and Siyeon Published in JHEP 11(2024, 141), pp. 1–28 Phenomenology /Theory bulk (3+N) Suhyeon Kim 6. Large Extra Dimension Briefly discuss LED phenomenology Probing LED using DUNE Improving constraints using higher energy beams

DUNE Posters (7. Nishat Fiza)

Neutrino Oscillation Prospects with a Dual-Baseline Beam from BNL to SNOLAB and DUNE

Nishat Fiza (Chung-Ang University), Mehedi Masud (Chung-Ang University), Kim Siyeon (Chung-Ang University), Guang Yang (Brookhaven National Laboratory)

DUNE Posters (8. Mehedi Masud)

Comparing the physics capabilities of a liquid argon detector and a water based liquid scintillator at DUNE

Kim Siyeon¹, Nishat Fiza¹, Suhyeon Kim¹, Emar Masaku¹, Mehedi Masud¹, Hokyeong Nam¹, Juseong Park¹, Yujin Park¹

11

