Comparing the physics capabilities of a liquid argon detector and a water based liquid scintillator at DUNE

Speaker: Mehedi Masud masud@cau.ac.kr

Kim Siyeon¹, Nishat Fiza¹, Suhyeon Kim¹, Emar Masaku¹, Mehedi Masud¹, Hokyeong Nam¹, Juseong Park¹, Yujin Park¹

¹ Chung-Ang University, Seoul, Korea

K-Neutrino Symposium 2025

- DUNE FD will have 4 modules of which module 1,2,3 are LArTPC
- Module 4 is under discussion, maybe a water-based liquid scintillator (WbLS), also known as THEIA

Advantage of WbLS (THEIA)

- Angular resolution due to Cherencov radiation : can identify ν from astrophysical sources and reduce background.
- Scintillation offers superior energy resolution ($\gtrsim 3 \% / \sqrt{E}$) compared to LArTPC ($\gtrsim 15 \% / \sqrt{E}$): Can detect more than one oscillation cycles and probe parameters more precisely.

Probability Analysis

- $\bullet P_{\mu e} \simeq \sin \Delta \left[\sin^2 2\theta_{13} \sin^2 \theta_{23} \sin \Delta + \alpha \Delta \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \cos(\delta_{13} + \Delta) \right]$
- Oscillation maxima: $\Delta = 1.27 \times \frac{\Delta m_{31}^2 [\text{eV}^2] L[\text{km}]}{E_n^{\text{OM}} [\text{GeV}]} \simeq (2n-1) \frac{\pi}{2}$ (n=1,2..)
- First oscillation maximum $OM_1 : E_1^{OM} \simeq 2.5 \text{ GeV}$
 - Second oscillation maximum $OM_2: E_2^{OM} \simeq \frac{1}{3} E_1^{OM} \simeq 0.8 \text{ GeV}$
- CP asymmetry $A_{CP} = P_{\mu e} \bar{P}_{\mu e} \simeq -2\alpha \sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12} \Delta \sin^2 \Delta \sin \delta_{13}$
- \bullet $A_{CP}(OM_2) \simeq 3 \times A_{CP}(OM_1)$

Probability asymmetry A_{CP}

- High asymmetry at oscillation maxima
- Sterile neutrino introduces small rapid oscillations
- NSI increases the magnitude of asymmetry at higher energies

Event spectra

- THEIA is able to distinguish the first and second oscillation maxima more efficiently
- A smaller bin size (50 MeV, as compared to 125 MeV) can probe more substructures

$\Delta \chi^2$ contours

- THEIA offers significant improvement, especially at 3σ
- Lifting of θ_{23} octant degeneracy at 3σ

Parameter reconstruction

- Dark colors are 1σ and light colors are 3σ regions
- Narrower bands imply better precision

Precision (half of 1σ reconstructed interval)

Summary

- One WbLS FD module (THEIA) can significantly exclude more parameter space than one LArTPC FD module (DUNE) due to better energy resolution and reach to second oscillation maximum
- The precision in reconstructing the oscillation parameters gets improved for THEIA
- Finally, there is less distortion in parameter precision at THEIA with new physics