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ABSTRACT

We present the three-flavor sensitivity study of the SHiP experiment to sterile neutrino oscillations. [1] To find a sensitivity, a Feldman-Cousins method with a parametric bootstrap for
systematics are used. Compared to the current near detector at 27 m (NSND), adding a far detector at 120 m (FSND) boosts sensitivity to |Uα4|2 by up to an order of magnitude. After
five years at the CERN SPS (2 × 1020 PoT), SHiP can reach |Uα4|2 ∼ few × 10−3 around ∆m2

41 ∼ 103 eV2 if we include FSND.

Motivation
• Anomalies (LSND, MiniBooNE, reactor, gallium) could

hint at an additional sterile neutrino state.
• SHiP provides an intense, high-energy mixed-flavor

beam with negligible muon & hadron background.
⇒ short baseline experiment

• With robust statistical methods, we find comprehensive
three-flavor sensitivity of the SHiP experiment to sterile
neutrino oscillations.

• Dual-baseline option (NSND at 27 m + FSND at 120
m) is also investigated.

3+1 Model Essentials
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SND location at SHiP

Figure 1. Simple layout of SHiP, with indication of SND
locations and distances from the proton target.

data estimation
CC DIS signal sα,i is

sα,i = e,µ,τ∑
β

(1 + ϕβ + ϕβ,i)
∫ Eend,i

Estart,i dEν
∫ L0+Ld
L0

dL
∫
dErec

× εαPβα
d2Nβ

dEνdL

σναA

σνβA
ρ(Erec|Eν)

(3)

• ϕβ, ϕβ,i: overall and shape flux nuisance terms
• Nβ: # of β neutrinos crossing SND (3-flavor model)
• εα, σναA: detection efficiency and cross-section
• (Estart,i, Eend,i): energy range of i-th bin
• L0: baseline length
• Ld: detector length
• Erec: reconstructed neutrino energy
• ρ(Erec|Eν): energy response (Gaussian, σ = 0.2Eν) [2]
Both detection efficiencies & background ratio are referred
from OPERA [3] (e, µ) and Ref. [4] with ϕτ−h ≥ 2.8 rad
(τ )

εe = 30%
εµ = 40%
ετ = 10%,

(4)

and the background bα,i is
be,i = bµ,i = 0
bτ,i = (1 + ϕµ + ϕµ,i)

∫ Eend,i

Estart,i dEν
∫ L0+Ld
L0

dL
∫ ∞
0 dErec

× R−1
s/bετPµµ

d2Nτ

dEνdL
ρ(Erec|Eν).

(5)

where the background of electron and muon channels are
ignored, due to 95% (e) and 99% (µ) purities. [3]

Statistical Framework
Confidence region from given data D & point est. of ϕ
from auxiliary measurements:

CR(D, φ; α) = {θ|p(θ; D, φ) > α} (6)
The p-value p is defined as a CDF of a test statistic λ:

1 − p(θ; D, φ) = ∫ λ(D,φ,θ)
0 ρ(λ′|θ, ϕ)dλ′. (7)

PDF of a test statistic:
ρ(λ′|θ, ϕ) = ∫

δ[λ′ − λ(O, φ′, θ)]ρ(O, φ′|θ, ϕ)dO dφ′

(8)
O & φ′: Sample of D & φ
The sample distribution ρ(O, φ′|θ, ϕ):
ρ(O, φ′|θ, ϕ) = ∏

α,i
Pois(Oα,i|sα,i + bα,i) × ρ(φ′|ϕ) (9)

The profile likelihood ratio [5, 6] is chosen as λ:

λ(O, φ, θ) ≡ −2 log maxϕ ρ(O, φ|θ, ϕ)
maxθ,ϕ ρ(O, φ|θ, ϕ). (10)

Sensitivity: CR(µ3ν, 0; α) where µ3ν, 0 are mean val-
ues of D&φ.

Single-Flavor Sensitivity
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Figure 2. Sensitivities (90% CL) in the (|Uα4|2, ∆m2
41)

plane, after five years at SHiP:
• Line styles:

dashed = 10% systematic uncertainty, solid = 20%.
• Colors:

blue = NSND-only
purple = 10% far/near ratio
red = 100% far/near ratio.

• Constraints
- green: β-decay (e), CCFR, MiniBooNE+SciBooNE &
MINOS (µ) or NOvA (τ );

- grey: Super-K (e) and IceCube-DeepCore (τ ).
Adding the far detector (FSND) boosts sensitivity by
up to an order of magnitude, especially near ∆m2

41 ∼
103 eV2.

Conclusion
• First full three-flavor sensitivity study of SHiP to 3+1

sterile neutrinos using Feldman–Cousins + bootstrap.
• Adding FSND at 120 m resolves appear-

ance–disappearance cancellations and sensitivities
with FSND are independent with systematic uncer-
tainties.

• With dual baselines and 5 years at CERN SPS (2 ×
1020 PoT), SHiP can reach |Uα4|2 ∼ few × 10−3 near
∆m2

41 ∼ 103 eV2.
• FSND increases sensitivity by up to an order of mag-

nitude for e and µ channels (2–3 times for τ ).
• Incorporates both appearance and disappearance

channels across all three active flavors for comprehen-
sive coverage.

Two-Flavor Mixing Results
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Figure 3. Sensitivities (90% CL) in the (|Ue4|2, |Uµ4|2)
plane
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Figure 4. Sensitivities (90% CL) in the (|Uτ4|2, |Ue4|2)
plane
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Figure 5. Sensitivities (90% CL) in the (|Uτ4|2, |Uµ4|2)
plane

• Styling: matches Fig. 2 (same colors & line types).
• constraints
- green: IceCube-DeepCore [7] on (|Uτ4|2, |Uµ4|2);
- hatched light green: Super-K [8] on (|Ue4|2, |Uµ4|2) and
(|Uτ4|2, |Uµ4|2) (assuming δ14 = δ24 = 0);

- grey: tritium β-decay limits on |Ue4|2 (vertical) and
MicroBooNE appearance limits on sin22θeµ (diagonal).
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