A ton-scale Liquid Argon Detector for Coherent Elastic Neutrino-Nucleus Scattering Experiment

Moohyun Ahn*, Se Wook Oh, Youngjae Lee, Dojin Kim, Haemin Jeong and Jonghee Yoo

> Seoul National University K-Neutrino Symposium 2025 April. 25th, 2025

Coherent Elastic Neutrino Nucleus Scattering (CEvNS)

- Neutral weak-current theorized in 1974
- Neutrino interacts with a whole nucleus when QR < 1
- Precise cross section within the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} Q_W^2 \left(2 - \frac{2T}{E_v} - \frac{MT}{E_v^2} \right)$$

M: Nucleus mass, *T*: recoil energy, Q_W : weak charge

- N^2 dependent cross section $(Q_W^2 = (N - (1 - 4sin\theta_W^2)Z)^2 \cong N^2)$
- Dominant process in low energy (< 100 MeV)
- Max recoil energy $\approx 2E^2/M < 100 \text{ keV}$

Spallation Neutron Source (SNS) at ORNL

CENNS-10

- 24-kg single phase Liquid Argon detector with 2 PMT
- Measured CEvNS cross section 3.5 σ in 2020 (within 1 σ of SM)
- Verified N^2 dependence of CEvNS cross section with CsI detector
- Measured 159 \pm 43 CEvNS event (SM predicted: 128 \pm 17)
- ~30% statistical uncertainty on CEvNS event

CENNS-1ton

- Liquid Argon detector with 122 PMTs
- Replacing CENNS-10 at the same location (Neutrino Alley at ORNL)
- Expect ~4400 CEvNS event/year.
- Measure CEvNS with 5% precision in 3 years.
- Precision physics study. (Non-standard neutrino interaction (NSI), Neutron radius, Beam produced Dark Matter...) 2025-06-25 Moohyun Ahn, K-Neutrino Symposiun

CENNS-1ton detector overview

CENNS-1ton detector at SNU

CENNS-1ton detector at ORNL

- Assembled the modules into the main chamber.
- Conducted vacuum tests on each volume.
 - Ar vessel: ~ 3e-6 torr.
 - Vacuum jacket: ~ 5e-5 torr.

Argon vessel

DAQ

CAEN VME8004X

CAEN VX2740

64 Channels.

ADC resolution: 16bits.

Power supply module.

Sampling rate:125 MS/s.

4 slot mini crate.

- VX2740 is replaced with the VX2740B due to noise issues.
- The PMT interface
 - Supplies high voltage to the PMTs.
 - Transmits their signals to the PC.

PMT TPB coating

- TPB (Tetraphenyl butadiene) absorb 128nm scintillation light and re-emit them as lower-energy visible light.
- Evaporator test has been completed.
- The coating thickness is verified by measuring the weight of a witness plate. \overline{k}
- PMT TPB coating is in production at a thickness of 0.20 mg/cm².

Summary & Future plan

- CENNS-10 (24kg) observed CEvNS in 2020, with 30% uncertainty
- CENNS-1ton (610kg) will reduce uncertainty 5% in 3 years
- 1ton detector is fabricated and assembled.
- 1ton detector has been delivered to ORNL after performance test.
- Assembly has been completed at ORNL, and performance test is in progress.

	2025. 04	2025. 05	2025. 06	2025. 07	2025. 08	2025. 09	2025. 10	2025. 11	2025. 12	2026. 01	2026. 02~
Operational test								$ \rightarrow $			
beam line install											
Safety Review & Commissioning											
Experiment											

Backup

Non-standard neutrino interaction (NSI)

Expect 10 times higher sensitivity than CENNS-10

(Left) SM interaction (Middle) neutrino flavor change (Right) muon to electron conversion

Neutron radius

Neutron radius is encoded by nuclear form factor in weak charge

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} = \frac{G_{\mathrm{F}}^2 M}{2\pi} \left[g_{\mathrm{V}}^p Z F_p(Q^2) + g_{\mathrm{V}}^n N F_n(Q^2) \right] \left(2 - \frac{2T}{E_{\mathrm{v}}} - \frac{MT}{E_{\mathrm{v}}^2} \right)$$

CENNS-10 first experimentally determined neutron radius in Argon

CENNS-1ton will measure $R_n(^{40}\text{Ar})$ to 4.6% after 3 years

Moohyun Ahn, K-Neutrino Symposiun

CENNS-1ton: Related physics

1ton chamber vacuum & cryocooler test

Vacuum lavel of inner cham ber and vacuum jacket is lo wer than 1e-4 torr.

Base temperature of each tower is lower than 40 K.

CENNS-1ton chamber test

Slow monitor

2025-06-25

Cold head Cup

2024/04/24 16:00:00 Time (hrs)

2024/04/24 16:00:00 Time (hrs)

Cold head 34.97 K

Cup 73.69 K

LAr condensing system 335 temperature (history)

Flow rate 0.00E+00 ls/m

2024/04/24

2024/04/24 15:00:00

Argon inlet flow rate

(history)

90

80

0.8

0.6 0.4 0.2

-0.2

-0.4

-0.6

-0.8

Main Chamber Assembly

- Assembled the modules into the main chamber.
- Conducted vacuum tests on each volume.
 - Ar vessel: ~ 3e-6 torr.
 - Vacuum jacket: ~ 5e-5 torr.

CENNS-1ton chamber test at ORNL

- Vacuum test after reassembly
 - Ar vessel: ~ 3e-6 torr.
 - Vacuum jacket: ~ 5e-5 torr.
- Cooling test and Argon gas condensing test are planned.
- Planning to install RTDs in the 1-ton chamber.
- RTD performance test in progress.

Slow Monitoring

Workflow

- Raw data \rightarrow InfluxDB \rightarrow Grafana
- InfluxDB: Data storage
- Grafana: Data visualization through the InfluxDB
- The Coherent collaboration integrates slow monitoring into a Grafana.

💶 🖬 🔿 🚳 influxdb 🛶 🌀 Grafana

PMT TPB coating

- TPB (Tetraphenyl butadiene) absorb 128nm scintillation light and re-emit them as lower-energy visible light.
- The system is designed to heat TPB under vacuum while monitoring the temperature and thickness in real time.
- The PMT and carousel independently rotate at 2 RPM during the coating process.

PMT TPB coating

- Evaporator test has been completed.
- The coating thickness is verified by measuring the weight of a witness plate.
- PMT TPB coating is in production at a thickness of 0.20 mg/cm².

Additional R&D at SNU

- The purification speed of liquid argon (~40 kg/h) is much faster than that of gaseous argon (~5 kg/h)
- Purifies impurities by passing through filters (activated copper for O2 and a molecular sieve for H2O)
- Argon purity will be measured through the pulse shape of scintillation light

