

Current status of RENE experiment

KIM Sang Yong On behalf of RENE Collaboration

Center for Precision Neutrino Research, Chonnam National University

Motivation

The RENE(Reactor Experiment for Neutrinos and Exotic) experiment uses the IBD signal from reactor to search for sterile neutrinos.

Slow Control Monitoring(SCM)

- **RENO-NEOS** joint analysis hints the sterile neutrino at $\Delta m_{41}^2 \sim 2 \text{ eV}^2$.
- To confirm θ_{14} , γ -catcher was designed to reduce systematic uncertainties. The **RENE** detector
 - \rightarrow Target : Gadolinium(Gd)-loaded(~0.5 %) liquid scintillator(LS).
 - $\rightarrow \gamma$ -catcher : LS detector, to catch escaping γ s from the target.
 - \rightarrow Installation : In the tendon gallery of Hanbit Nuclear Power Plant.
 - \rightarrow Veto detector : Plastic scintillator, to remove external background.

Detector Method : Inverse Beta Decay(IBD)

• $\overline{v_e}$ interacts with a proton, producing a positron and a neutron.

- A signal from positron annihilation (prompt signal) is followed by a delayed signal by the neutron capture process.
- With the signal pair, the neutrino interaction event can be identified.

- **Development in progress, finalizing soon.**
- HV, environmental temperature, humidity, and radon monitoring is done.
- LS temperature, LS level, DAQ rack temperature monitoring is in progress.

Detector Calibration

Number of photo-electrons(NPE) distribution of radioactive source

Source data taking to confirm the performance of the detector.

Detector Structure

- Target : Gd-LS in acrylic cylinder of R=275 mm and L=1200 mm.
- Gamma Catcher : LS in stainless steel of $2800 \times 1200 \times 1200$ mm.
- Shielding : 100 mm borated(5%) PE, 100 mm high density PE, and 100 mm lead blocks.
- Veto detector : Plastic scintillators(EJ-200), instrumented with 32 2-inch PMTs.

Detector Construction

Build frame

bottom shielding & catcher

Borated PE & Lead blocks

Reflector & PMTs

Build Shielding & VETO

Cabling for DAQ

ADC Counts

- The most probable value(MPV) : Fit with exponential & landau function.
- The minimum ionizing value of dE/dx : ~ 2 MeV·cm²/g.
- HV values were adjusted to fit the Landau peak position and threshold.

Summary

- The RENE experiment aims to search for the sterile neutrino at $\Delta m_{41}^2 \sim 2 \text{ eV}^2$.
- The construction of RENE detector is done.
- RENE detector commissioning is on going.
- We are currently tuning the DAQ condition, calibration, and so on.
- Finally, we plan to install & start data taking in tendon gallery in 2025.

Reference

[1] Z. Atif et al., Phys. Rev. D 105, L111101 (2022)