

Search for nucleon decay via $p \rightarrow \nu \pi^+$ and $n \rightarrow \nu \pi^0$ in 0.484 Mton-year of Super-Kamiokande data

Seunghyun Jung¹ for the Super-Kamiokande Collaboration ¹Department of Physics and Astronomy, Seoul National University

Nucleon Decay and Super-Kamiokande (SK)

Motivation

- A Grand Unified Theory (GUT) is proposed with extended gauge symmetry beyond the Standard Model (SM)
- Nucleon decay offer a direct probe for the viability of the GUTs with or without Supersymmetry (SUSY)
- The Super-Kamiokande (SK) water Cherenkov detector [1] is ideal for the nucleon decay searches
- GUT models which favor $p \rightarrow v\pi^+$ and $n \rightarrow v\pi^0$: SUSY flipped SU(5) [2-3] and a minimal SUSY SO(10) [4]

Improvements on previous analysis [5]

- With addition of SK IV-V data to SK I-III, the detector livetime has increased by 132% to 17.8 years
- The fiducial volume (FV) of SK is enlarged by 21% using an improved analysis techniques [6]
- Additional systematic uncertainties have been newly implemented (atmospheric v flux and interactions)
- Physics models for pion production and its nuclear interactions (FSI) are updated with external data [6-7]
- \rightarrow Signal efficiency is decreased by increased pion absorption in (300,600) MeV/c region

n→νπ⁰ МС

FSI before updates [5]

FSI after updates [7]

Detector phase

Event Selection

Events fully contained in the fiducial volume (FCFV)

- Eliminate background events in raw data which are caused by cosmic ray muons, low-energy radioactivity, and flashing PMTs
- **FV** = region inside the ID located at least 1m away from the walls
- Events are required to be reconstructed within the FV, to exhibit sufficient visible energy deposit, and to show no activity in the OD **Event reconstruction**
- Physics quantities such as vertex position, the number of Cherenkov rings, momentum, particle type, and the number of Michel electrons are reconstructed [1]

Spectrum Analysis

Search for signal bump above the data spectrum

• χ^2 is based on the Poisson probability and quadratic penalty terms

$$\chi^{2} = 2 \times \sum_{i}^{\text{nbins}} \left(E_{i} + O_{i} \times \left[\ln \frac{O_{i}}{E_{i}} - 1 \right] \right) + \sum_{j}^{\text{nsys}} \left(\frac{\epsilon_{j}}{\sigma_{j}} \right)^{2}$$
$$E_{i} = \left[E_{i}^{\text{bkg}} + \beta \times E_{i}^{\text{sig}} \right] \times \left(1 + \sum_{j}^{\text{nsys}} f_{ij} \epsilon_{j} \right)$$

- *E_i*: Expected events
- 0_i: Observed events
- σ_i : Size of the systematic error
- f_{ii} : Fractional change by error
- ϵ_i : Nuisance parameter for fitted error
- β : Signal normalization parameter

Two showering rings with 0-decay *e* and Mass $M_{tot} \in (85, 185) MeV/c^2$

Event selection		Signal efficiency [%]				
		SK-I	SK-II	SK-III	SK-IV	SK-V
$p ightarrow u \pi^+$	0-decay- <i>e</i>	14.5±0.1	14.2 <u>+</u> 0.1	14.5±0.1	11.6±0.1	11.7±0.1
	1-decay- <i>e</i>	15.9 <u>+</u> 0.1	15.3±0.1	15.9±0.1	18.1±0.2	18.1±0.2
$n ightarrow u \pi^0$		32.2±0.2	30.1±0.2	31.9±0.2	32.6±0.2	32.9±0.2

Reconstructed π^0 -like momentum [MeV/c]

Sensitivity with respect to the null-hypothesis

- Updated FSI model reduced it by 16% for $p \rightarrow \nu \pi^+$ and 32% for $n \rightarrow \nu \pi^0$
- Adding the SK IV-V to the SK I-III data increased it by 60% for both modes
- Enlarging the FV increased it by 10% for $p \rightarrow \nu \pi^+$ and 5% for $n \rightarrow \nu \pi^0$
- Systematic uncertainties reduced it by 65% for $p \rightarrow \nu \pi^+$ and 40% for $n \rightarrow \nu \pi^0$

Search Results

Best-fit

- **Best-fit gives** $\beta = 0$ with constraint by $\beta \ge 0$ for both modes
- $\chi^2/\nu = 178.6/159$ for $p \rightarrow \nu \pi^+$ and $\chi^2/\nu = 77.3/99$ for $n \rightarrow \nu \pi^0$

Nucleon decay partial lifetime limits

- $\Delta \chi^2$ contour over $\beta \geq 0$ (physical region)
- **Critical values for 90% C.L. are estimated by the** Feldman-Cousin method [9-10]

