
LATEX TikZposter

DIFFUSION AND FLOW MATCHING MODEL FOR ICECUBE
NEUTRINO EVENT SIMULATION AND RECONSTRUCTION

M. Park, T. Kim, J. Y. Son, C. D. Rho

Department of Physics, Sungkyunkwan University

DIFFUSION AND FLOW MATCHING MODEL FOR ICECUBE
NEUTRINO EVENT SIMULATION AND RECONSTRUCTION

M. Park, T. Kim, J. Y. Son, C. D. Rho

Department of Physics, Sungkyunkwan University

Introduction
The IceCube Neutrino Observatory is a cubic-kilometer-scale detector located beneath the Antarctic ice, designed to capture Cherenkov light emitted by secondary particles produced in

neutrino interactions. Reconstructing the physical parameters of such eventssuch as energy, direction, and interaction vertexfrom sparse and noisy photon signals is a key task for physics
analyses in IceCube.In recent machine learning research, score-based diffusion models and flow matching techniques have gained attention as powerful generative approaches. These models
are capable of capturing complex data distributions and enabling stable conditional generation or inference, making them promising tools for a variety of scientific applications.In this
work, we explore the application of these generative frameworks to IceCube. Specifically, we are developing conditional score-based diffusion models and flow matching models trained on
simulated IceCube data. These models are designed to operate in both directions: generating detector responses from particle-level parameters, and reconstructing physical properties from
observed detector signals. Our approach aims to provide a new, flexible framework for both event simulation and reconstruction in IceCube.

Muon Neutrino Event in IceCube

A muon neutrino (νµ) undergoing a
charged-current interaction near or within the
detector medium produces a relativistic muon
that emits Cherenkov photons.

Due to its long lifetime, a muon can travel
through the detector and leave a track-like
pattern. This feature results in relatively ac-
curate angular resolution.

Muon-Track Reconstruction
• For a given track θ⃗ , the geometric arrival time tres of a Cherenkov photon is as follows:

tgeo = t0+
p̂ · (ri− r0)+ d tanθc

cvac

• Due to the optical properties of the detector medium,
the arrival time of a Cherenkov photon is stochasti-
cally delayed. The delay, tres, is modeled by the Pandel
function.

p(tres, |d, θ⃗ ) =
β α

Γ(α)
tα−1
res exp(−β ttes)

• The track is obtained by maximizing the following - form known as the MPE likelihood

LMPE(θ⃗ ) =
1st hits

∏
i

ni · p(tres,i|d, θ⃗ ) ·
(∫ ∞

tres,i

p(t|d, θ⃗ )dt
)ni−1

Triple Pandel Network and Reconstruction

• Due to the non-homogeneous and anisotropic optical properties of the South Pole ice,
accurately determining the probability density function p(tres | d, θ⃗ ) is challenging.

• To address this, we designed a deep learning model, the Triple Pandel Network, that
maps track and DOM geometry, d, θ⃗ , to photon arrival distribution p(tres|d, θ⃗ ).

p(tres|d, θ⃗ ) =
3

∑
i=0

wi×
[ β αi
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]
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Motivation to New Approach

• Above approximately 1 TeV, muons lose energy stochastically via bremsstrahlung, pair
production, and nuclear interactions. These processes produce additional signals in the
detector that are distinct from the Cherenkov radiation emitted by the muon itself.

Because it is infeasible to simulate every
possible stochastic energy loss scenario,
some variations in photon arrival times
cannot be accurately modeled. Conse-
quently, both the current reconstruction
methods and the TPN approach share this
fundamental limitation.

Diffusion & Flow Models for Muon Reconstruction

• Manifold Theorem:
The manifold hypothesis states that high-dimensional data, such as IceCube detector
signals (e.g., 5160 × 2), lie near a much lower-dimensional manifold. Even stochastic
energy losses from muons are likely constrained to this structure.

• Why Generative A.I:
Diffusion and flow-matching models learn the underlying manifolds of the data. By cap-
turing the manifold, they can represent complex variations more robustly than traditional
methods. As a result, simulation of every possible scenario is unnecessary, since the
learned manifold allows generating or evaluating unseen cases.

• Then How We Use Generative Models for Muon Reconstruction:
We first train a model that can produce realistic muon simulation events. Such models
are capable of learning the manifold of the data distribution. So once trained, the model
allows us to compute the likelihood of observed data, which can then can be used for
reconstruction.

Conclusion

• We have developed the Triple Pandel Network, which accurately models p(tres | d, θ⃗ )
across the entire detector volume.

• We have adopted a Generative A.I. approach to address the stochastic energy loss phe-
nomena of muons.

• We are developing Diffusion and Flow-Matching models for muon simulation.

• The model will be further developed and applied to reconstruction tasks.
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