Neutrino Oscillation Prospects with a Dual-Baseline Beam from BNL to SNOLAB and DUNE

- K-neutrino Symposium 2025
 - - Nishat Fiza

June 26th, 2025

Plan of the talk

- Introduction
- Proposal for a new neutrino beam
- Neutrino flux calculation
- Results
- Conclusion

NuMI beam (Fermilab)

120 GeV proton

Baseline 1300 km for DUNE experiment

POT ~ 10^{21} /year

Oscillation Probability

- Neutrinos from different sources will arrive at the DUNE Far Detector (FD) with different oscillation phases
- These phase differences result in oscillation maxima and minima occurring at different neutrino energies
- The variation in energy-dependent features enables the study of different oscillation parameters
- This approach enhances sensitivity to the full range of neutrino oscillation phenomena

Flux calculation

Total Momentum for Selected PID

Correlation between meson and neutrino momenta

Combining these informations, using ROOT

Detectors associated

Detector 1 (baseline 900 km)

u_{μ} disappearance events at DUNE FD

- Assumed proton-on-target (POT) ~ $10^{23} y^{-1}$
- Events generated using **GLoBES** simulation software
- DUNE Far Detector configuration
 based on the Technical Design Report (TDR)

 v_{μ} disappearance events for EIC to DUNE FD baseline

ν_e appearance events at DUNE FD

Energy [GeV]

- WbLS detector at SNOLAB
- Work in progress to incorporate refined detection efficiency and energy smearing effects

ν_{μ} disappearance events at SNOlab

 v_{μ} disappearance events for EIC to SNOlab baseline

ν_e appearance events at SNOlab

- Bin widths are adjusted with energy to ensure statistical uniformity across the energy spectrum
- Smaller bin widths at lower energies allow for better resolution of oscillation patterns.
- This helps in identifying finer features of the neutrino oscillation behavior.

δ_{13} sensitivity

- Simultaneous measurements at two distinct baselines using the same beam configuration help to reduce beam-related and detector-related systematic uncertainties
- Shared systematics (e.g., flux normalization, cross-section uncertainties) are better constrained
- Comparison of observed spectra at both sites improves overall measurement precision

