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POT ~ /year1021

Baseline 1300 km for DUNE experiment

120 GeV proton

NuMI beam (Fermilab)
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Proton collider

Proton on Graphite target (Simulated)

Proton luminosity ~  cm  s  
Which can result up to POT ~ /year

1033 −2 −1

1040

Baseline 2900 km from EIC to DUNE Far Detector

40-400 GeV proton

Capable of  producing ’s with higher 
energy

ν

Electron Ion Collider (BNL)
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Oscillation Probability

• Neutrinos from different sources will arrive at the 
DUNE Far Detector (FD) with different oscillation 
phases

• These phase differences result in oscillation 
maxima and minima occurring at different neutrino 
energies

• The variation in energy-dependent features enables 
the study of different oscillation parameters

• This approach enhances sensitivity to the full range 
of neutrino oscillation phenomena
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Graphite target
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Flux calculation
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( )π±, μ±, K±
Meson momentum distribution

Correlation between meson and neutrino momenta

Combining these informations, using ROOT



DUNE FD

BNL (Neutrino source)

Detector 1 (baseline 900 km)

Detector 2 (baseline 2900 km)

Detectors associated
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νμ	disappearance	events	for	EIC	to	DUNE	FD	baseline
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 disappearance events at DUNE FDνμ

•  Assumed proton-on-target (POT) ~ 

•  Events generated using GLoBES 
simulation software

•  DUNE Far Detector configuration 
based on the Technical Design Report 
(TDR)

1023 y−1
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νe	appearance	events	for	EIC	to	DUNE	FD	baseline
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 appearance events at DUNE FDνe
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νμ	disappearance	events	for	EIC	to	SNOlab	baseline
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 disappearance events at SNOlabνμ

• WbLS detector at SNOLAB

• Work in progress to 
incorporate refined 
detection efficiency and 
energy smearing effects
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νe	appearance	events	for	EIC	to	SNOlab	baseline
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 appearance events at SNOlabνe

• Bin widths are adjusted with 
energy to ensure statistical 
uniformity across the energy 
spectrum 

• Smaller bin widths at lower 
energies allow for better 
resolution of oscillation 
patterns. 

• This helps in identifying finer 
features of the neutrino 
oscillation behavior.
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• Simultaneous measurements at two distinct baselines using the same beam 

configuration help to reduce beam-related and detector-related systematic uncertainties

• Shared systematics (e.g., flux normalization, cross-section uncertainties) are better 

constrained

• Comparison of observed spectra at both sites improves overall measurement precision
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Conclusion 



Thank you
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