Undersea Korea Neutrino Observatory for CP Violation Measurement

Myeong-gi Jo

Seoul National University

2025-06-26

Contents

Undersea Detector Configuration

Introduction

Donghae Baseline

Donghae Detector

Simulation & Analysis

Neutrino Production & Interaction Simulation

Event Rate Estimation

Statistical Analysis

Results

Precision on CP Violation

Precision on Mass Ordering

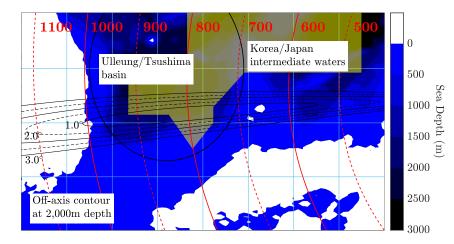
Summary

Baryogenesis

• Why does the observable universe have more matter than antimatter?

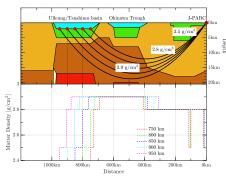
Leptonic CP Violation

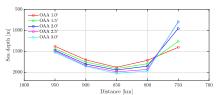
- Leptonic CP violation can significantly contribute to baryogenesis.
- Measurement of leptonic $\delta_{\rm CP}$ has been one of the most important subjects of neutrino physics.

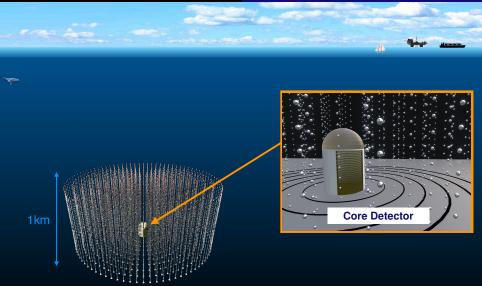

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\mathrm{CP}}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\mathrm{CP}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Delta_{\alpha\beta}^{\mathrm{CP}} \equiv \frac{1}{2} [P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})] = \sum_{j \neq k} \mathrm{Im}(U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^*) \sin 2\Delta_{jk}$$

Research Background

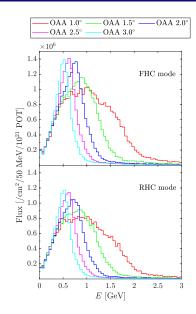

- Hyper-Kamiokande has great potential for precisely measuring the CP phase.
- It is already known that joint analysis with the Korea Neutrino Observatory detector will achieve great sensitivity.
- We introduce a novel candidate site for the Korea Neutrino Observatory detector, **Donghae**.


Donghae Map with OAA Contour


Geophysical Properties

- J-PARC neutrino beam covers L = 750 950 km, OAA = $1.0^{\circ} 3.0^{\circ}$.
- Average matter density \sim 2.8 g/cm³ 2.9 g/cm³.
- Average sea depth \sim 1700 m. Deepest at L = 850 km.

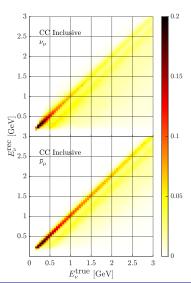
Introduction
Donghae Baseline
Donghae Detector


Ultimate Donghae Neutrino Telescope Complex

Detector Configuration

- A water Cherenkov detector will be installed as a core neutrino detector.
- The undersea detector does not need any excavation.
 - ► Time-saving
 - ▶ Free to enlarge its size as long as it endures sea pressure
- We can start from the smaller detector and extend it by installing a cylindrical module.
 - ► Scale-flexibility

Neutrino Flux Simulation

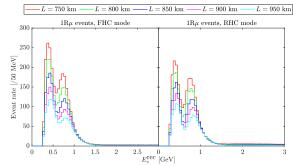

- FLUKA2024 was used for neutrino production simulation.
- Monoenergetic 30 GeV proton beam and horn current of 320 kA were used for both FHC (ν) and RHC (ν̄) modes.
- Plot on the right shows the flux at Hyper-K normalized with $[/\text{cm}^2/50 \text{ MeV}/10^{21} \text{ POT}].$

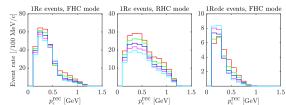
Neutrino-nucleus Interaction Simulation

- GENIE was used for neutrino-nucleus Interaction Simulation.
- Considered interaction types: QE, RES, MEC, and DIS.
- Plot on the right shows the response matrix for the true and reconstructed energy.

$$E_{\nu}^{({\rm rec})}(E_l,\theta_l) = \frac{1}{2} \frac{m_l^2 + (m_n^{\rm eff})^2 - m_p^2 - 2E_l m_n^{\rm eff}}{E_l - |\vec{p}_l| \cos\theta_l - m_n^{\rm eff}}$$

Event Topologies


- We use five event samples.
 - ▶ $1R\mu$ (one μ -like ring, both horn current modes)
 - ▶ 1Re (one e-like ring, both horn current modes)
 - ▶ 1Rede (one e-like ring + decayed e-like ring, FHC mode only)
- Event selection criteria:


Criteria	$1R\mu$	1Re	1Rede
wall (cm)	> 50	> 80	> 50
towall (cm)	> 250	> 80 > 170	> 270
charged lepton momentum (MeV/c)		> 100	> 100
number of Michel electrons	≤ 1	0	1
$E_{\nu}^{({ m rec})} \; ({ m MeV})$	_	< 1250	< 1250

Event Rate at Undersea Detector

Assumptions:

- Running time: Ten years $(27 \times 10^{21} \text{ POT})$
- Running partition: FHC: RHC = 1:3
- Detector volume: 217 kt Inner Detector

Binned Likelihood-ratio Method

• Likelihood function used for the analysis:

$$-2 \ln \mathcal{L}_0 = -2 \ln \mathcal{L}_{\text{stat}} - 2 \ln \mathcal{L}_{\text{sys}}$$

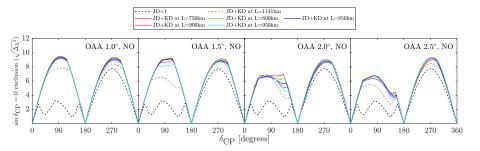
$$= 2 \sum_{\text{samples bins}} \left[N_{\text{MC}} - N_{\text{Data}} + N_{\text{Data}} \ln \frac{N_{\text{Data}}}{N_{\text{MC}}} \right]$$

$$+ (\mathbf{f} - \mathbf{f}_0)^T V^{-1} (\mathbf{f} - \mathbf{f}_0)$$

• Sensitivities for CP violation and mass ordering are tested.

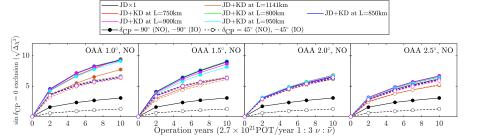
$$\sqrt{\Delta\chi^2} = \sqrt{\chi^2_{\rm test} - \chi^2_{\rm best-fit}}$$

 Both cases of known and unknown mass orderings are considered.

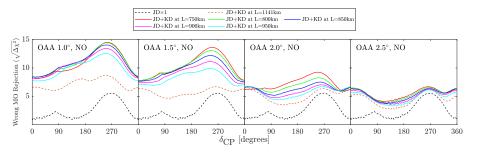

Systematic Uncertainties

• To save computation time, systematic uncertainties are quadratically summed for each event sample.

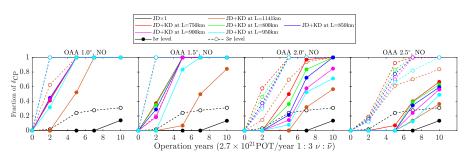
Uncertainties	$1R\mu$	1Re	1Rede
FHC (ν mode)	1.2%	2.1%	5.2%
RHC ($\bar{\nu}$ mode)	1.1%	2.2%	-


- 100% correlation is assumed between $1R\mu$ and 1Re samples for each horn current mode.
- Otherwise, zero correlation is assigned.

Exclusion of $\sin \delta_{\rm CP} = 0$ (Ten Years)


- With unknown mass ordering, the undersea detector shows higher sensitivities.
- Lower OAA has better sensitivity; the best one is OAA 1.0°, L=750 km for ten years of operation.

Exclusion of $\sin \delta_{\mathrm{CP}} = 0$ – Various Years


- Before ten years, the best site is L=800 km (NO) or L=850 km (IO) at OAA 1.0°.
- The optimal underwater detector discovers CP violation in less than 3 years.

Rejection of Wrong Ordering (Ten Years)

- The undersea detector is much stronger in mass ordering determination.
- Best sensitivity comes from OAA 1.0°, L = 750 850 km.

δ_{CP} Fraction Finding Correct Ordering

• The undersea detector at OAA 1.0° will discover the correct mass ordering for all $\delta_{\rm CP}$ values within five years of operation.

Summary

- We propose the undersea Korean neutrino observatory detector for precise measurements of the leptonic CP phase.
- The undersea detector has advantages regarding its lower degeneracy in mass ordering and scale-flexibility.
- The undersea detector shows better sensitivity on both CP violation and mass ordering with the best candidate site of OAA 1.0° / L = 750 850 km.
- The undersea detector will usher in a new era of neutrino physics by the power of its flexibility and high sensitivity to mass ordering.

Thank You

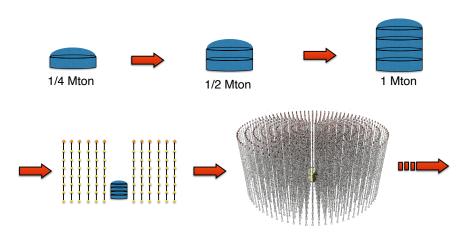
Backup

Baryogenesis and CP Violation

• Consider decay processes of a very heavy particle X which violates a baryon number. Characterize final states with their baryon number B_1 and B_2 ($B_1 \neq B_2$).

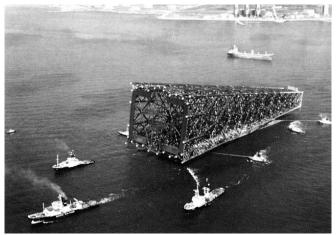
$$\frac{\Gamma(X \to B_1)}{\Gamma(X \to \text{all})} := b \qquad \frac{\Gamma(X \to B_2)}{\Gamma(X \to \text{all})} := 1 - b$$

$$\frac{\Gamma(\bar{X} \to \bar{B}_1)}{\Gamma(\bar{X} \to \text{all})} := \bar{b} \qquad \frac{\Gamma(\bar{X} \to \bar{B}_2)}{\Gamma(\bar{X} \to \text{all})} := 1 - \bar{b}$$


• By CPT theorem and unitarity, $\Gamma(X \to \text{all}) = \Gamma(\bar{X} \to \text{all})$, and assuming the number of X and \bar{X} were equal,

$$\Delta B = (b - \bar{b})B_1 + [(1 - b) - (1 - \bar{b})]B_2 = (b - \bar{b})(B_1 - B_2) \neq 0$$

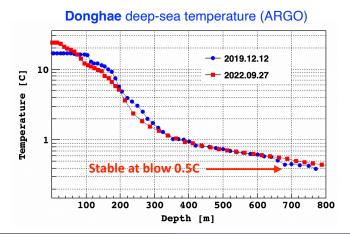
• Thus, baryogenesis requires $b \neq \bar{b}$, the CP violation.


Scale-flexibility of Undersea Detector

• The detector construction can be divided into several phases depending on the physics requirement and budget.

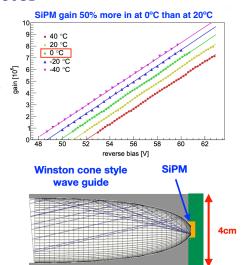
Undersea Detector Construction

• Moving the detector structures to the Ulleung basin is absolutely possible; Hyundae did more difficult work in 1976.


Power Station for Undersea Detector

• Generating electric power for the undersea is also possible. One possibility is Hexicon, which is a floating wind turbine that generates 40 MW of power.

Donghae Environment


 At the candidate undersea site in Donghae, the detector will suffer pressure up to 200 atm and temperature below 0.5 °C.

SiPM in Undersea Detector

• In this environment, SiPM is more favorable than PMT, as it is more resistant to pressure and performs better at low temperatures.

• We can apply the Winston cone-style waveguide to overcome the small photo-coverage of SiPM.

