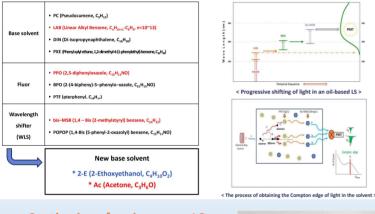


Feasibility Studies on Computed Tomography Images and Hounsfield Unit Value Measurement Using a New Liquid Scintillator


KIM Byoung Chan, KIM Eun min, KIM Sang yong, JOO Kyung Kwang*

(Center for Precision Neutrino Research (CPNR), Department of Physics, Chonnam National University)

Introduction & Motivation

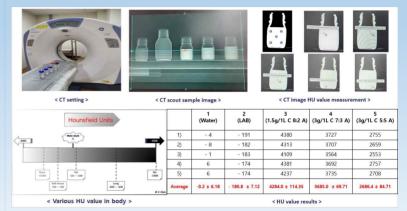
- Liquid scintillator (LS) is used in various fields such as nuclear, particle physics and medical physics.
- LS is diluted by mixing oil with the base solvent, and fluor is added to make the light emission
- In general, a surfactant (SF) is used to mix water and oil in the LS.
- Alcohol and acetone can be used to make LS without SF.
- Fluor is 2,5-diphenyloxazole (C₁₅H₁₁NO, PPO). Secondary wavelength shifter materials are 1,4-bis (5-phenyl-2-oxazolyl) benzene (C₂₄H₁₆N₂O₂, POPOP) & 1,4-bis(2-methylstyryl)benzene (C₂₄H₂₂, bis-MSB).
- Water has a density of 1.0 g/cm³, 2-Ethoxyethanol (2-E) is 0.93 g/cm³, and acetone is 0.79 g/cm³. Alcohol and acetone have similar densities to water when mixed with water.
- Contrast agent is a solution and mixes well with acetone. It also has good attenuation of X-ray. In addition, the contrast agent is harmless to the human body.
- Density can be measured using a density meter, but the uniform density can be known using Computed Tomography (CT) image.
- ▶ Finally, the physical characteristics of the LS can be measured using medical physics devices.

What is the liquid scintillator (LS) ?

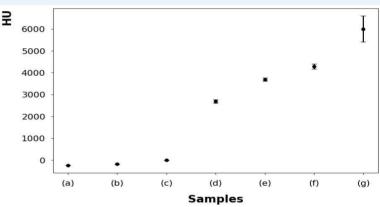
n an an an an **i**

Synthesize of various new LS (with Contrast agent) using acetone

Sample	Compositions of CbLS *	PPO Solubility
#		
1	Contrast agent (80 mL), Acetone (20 mL), PPO (1.5 g/L)	Soluable
2	Contrast agent (90 mL), Acetone (10 mL), PPO (3 g/L)	Insoluable
3	[Contrast agent (80 mL) + PPO (3 g/L)], Acetone (20 mL)	Insoluable
4	Contrast agent (80 mL), [Acctone (20 mL) + PPO (3 g/L)]	Insoluable
5	Contrast agent (70 mL), Acetone (30 mL), PPO (3 g/L)	Soluable
6	Contrast agent (60 mL), Acetone (40 mL), PPO (3 g/L)	Soluable
7	Contrast agent (50 mL), Acetone (50 mL), PPO (3 g/L)	Soluable


* CbLS = Acetone - based LS + contrast agent

UV irradiation test



Light emission from (a) CbLS (left) and water (right) under visible light and (b) ultraviolet test conditions

Measurement of CT image and House field Unit (HU) value at CbLS

(a) Acetone, (b) LAB, (c) Water, (d) CbLS(#7), (e) CbLS(#5), (f) CbLS(#1), (g) Contrast agent

Summary

- 1. Investigate the possibility of using CbLS in dosimetry area of medical physics.
- 2. CT image & HU values were measured.
- 3. CbLS is expected to contribute to the improvement of particle therapy and genenal

X-ray methods or technique in medical physics.

4. Future plan : light output of CbLS and its applicator.

References

- B. C. Kim, J. Y. Choi, S. Y. Park, Y. S. Song, H. J. Woo and K. K. Joo, "Development of an Alcoholbased Liquid Scintillator and its Application", New Physics: Sae Mulli, Vol. 71, No. 1, pp.21~28, (2021). http://dx.doi.org/10.3938/NPSM.71.21
- J. Y. Choi, K. K. Joo, B. C. Kim and J. B. Park, "Photo image processing analysis of electron beam irradiatio n on a new liquid scintillator based on alcohol", Phys. Src. 96, 045305 (2021). https://doi.org/10.1088/1402-4896/abe496
- H. H. Gang, D. H. Kim, "Study on Shielding using CT Contrast Medium", J. Korean Soc. Radiol, Vol. 12, No .5, pp.693 – 698, October (2018). https://doi.org/10.7742/iksr.2018.12.5.693
- Y. K. Kim, J. J. Han, and K. S. Lee, "A Study on Characteristic of Photoelectric Absorption with Diagnostic X-ray Contrast Media", J. of the Korea Society of Rad. Technology; ISSN 1226-
- 2854, Vol. 21, No. 1, pp.46 51, (1998).
 S. K. KIM, Y. S. Ji, "Research and Consideration of Ecofriendly Radiation Shielding using CT Contrast Agen t", J. of the Korean Soc. Of Rad., Vol. 17, Issue 6, pp.827-833, (2023). https://doi.org/10.7742/jksr.2023.17.6.827