

WIND Water In Neutrino Detectors

Kim Siyeon Chung-Ang University

for

The 4th K-Neutrino Symposium June 25 ~ 27, 2025

Based on discussions with

BNL: Minfang Yeh, Guang Yang, Milind Diwan

• CAU: Mehedi Masud, 권순우, 박주성

• CNU: 양병수

• JNU: 고영주

• KNU: 박정식

• SNU: 유종희

WIND

Water In Neutrino Detectors

- Water-based Liquid Scintillator into RENO Detectors
 - Kilo-ton Scale Detector R&D
 - GeV-scale neutrino detection
 - MeV-scale neutrino detection
 - BNL WbLS R&D with 1-ton and 30-ton prototype
 - Renovate and reuse the RENO facilities
 - Plan to monitor all reactors in Korea

RENO

Reactor No.	Near Detector (m)	Far Detector (m)
1	667.9	1556.5
2	451.8	1456.2
3	304.8	1395.9
4	336.1	1381.3
5	513.9	1413.8
6	739.1	1490.1

Table 1.2: Distances of the reactor cores from the near and far detectors.

RENO

Overburden: ND 120 m.w.e.

FD 450 m.w.e.

• Target: 16-ton Liquid Scintillator with 0.1% Gd

• PMT: 354 10-inch Hamamatsu (R7081)

- 14% photo-sensitive surface area coverage
- IBD rate per day without background : FD 46.8 / ND 464 for 1.2 MeV<E_p<8 MeV

Detector	Outer	Outer	Thickness	Material	Volume	Mass
Component	Diameter(mm)	Height(mm)	(mm)		(m^{3})	(tons)
Target	2750	3150	_	Gd-loaded LS	18.70	16.08
Target Vessel	2800	3200	25	Acrylic	0.99	1.18
γ -catcher	3940	4340	570	LS	33.19	28.55
γ -catcher Vessel	4000	4400	30	Acrylic	2.38	2.83
Buffer	5388	5788	694	Oil	76.46	64.22
Buffer Vessel	5400	5800	6/12*	SUS	1.05	8.39
Veto	8400	8890	1500	Water	354.84	354.84

Table 3.1: Dimensions of the mechanical structure of the detector. (*)The buffer vessel thickness is 6 mm for the top and barrel sections and 12 mm for the bottom section.

WbLS basic performance

- Developed and characterized a variety of WbLS formulas for multiple frontiers.
- In the context of neutrino physics, Cherenkov and Scintillation light separation is a key feature.

In general:

- Scintillation light yield proportional to WbLS concentration
- Scintillation light later than Cherenkov light
- Scintillation light with a narrower wavelength distribution than Cherenkov light
- Scintillation light generated isotropically

1ton under UV

Cooperation of CAU Nula and BNL WbLS Group

Kim Siyeon | K-Neutrino 2025

RENO Detector

	U-235	U-238	Pu-239	Pu-241
Fission Fraction	57.4%	7.3%	29.8%	5.5% Rev. D 104 , I
Released Energy [MeV]	202.36	205.99	211.12	214.26

 $\langle Y_{IBD} \rangle = 5.891 \times 10^{-43} \text{ cm}^2/\text{fission}$ RENO's average IBD yield Phys. Rev. D **104**, L111301

From Yang's Slide "RENO"

• 1,211,995(144,667) \bar{v}_e candidate events observed for near(far).

Detector	Near	Far
IBD rate	366.47 ± 0.33	38.70 ± 0.10
after background subtraction	357.39 ± 0.38	36.64 ± 0.16
total background rate	9.08 ± 0.18	2.06 ± 0.13
live time [days]	3307.25	3737.85

Water In the Neutrino Detector

- Water 450 m³
- Inner surface 270 m²
- 350 PMT -> photo-cathode coverage 6.5% 1500 (2000) PMTs -> 27.8% (37.0%)
- Number of protons $N_p = 3.02 \times 10^{31}$
- Efficiency ε = 70%
 - Cf: RENO 76.5%, Daya Bay 78.8%
- Number of neutrino events

$$N_{\nu} = \sum_{i}^{6} \frac{N_{p} \epsilon}{4\pi L_{i}^{2}} \langle Y_{IBD} \rangle \frac{P_{th,i}}{\langle E_{rel} \rangle}$$

- 2,090 per day >>> 763,000 per year
 - Cf: RENO 144,667 / 3800 days

Thanks to 고영주

 Sufficient statistics for 5-MeV excess using the target H₂O. Monitoring system for Korean reactors

Thermal Capacity (MWth)				
Hanbit	L (meters)			
2787	1556			
2787	1456			
2825	1396			
2825	1381			
2825	1413			
2825	1490			
total	16.9 GWth			

Thermal Capacity (MWth)			
Hanul	Shin-Hanul		
2775	3983		
2775	3983		
2825			
2825			
2825			
2825			
total	24.8 GWth		
Wolsong	Shin-Wolsong		
2061	2825		
2061	2825		
2061			
2061			
total	16.0 GWth		
Kori	Shin-Kori		
1723	2825		
1882	2825		
2912			
2912			
total	13.4 GWth		

From PRIS at IAEA.org

Monitoring system for Korean reactors

Thermal Capacity (MWth)				
Hanbit	L (meters)			
2787	1556			
2787	1456			
2825	1396			
2825	1381			
2825	1413			
2825	1490			
total	16.9 GWth			

Thermal Capacity (MWth)			
Hanul	Shin-Hanul		
2775	3983		
2775	3983		
2825			
2825			
2825			
2825			
total	24.8 GWth		
Wolsong	Shin-Wolsong		
2061	2825		
2061	2825		
2061			
2061			
total	16.0 GWth		
Kori	Shin-Kori		
1723	2825		
1882	2825		
2912			
2912			
total	13.4 GWth		

From PRIS at IAEA.org

Eos Neutrino Detection **Technology Demonstrator**

Logan Lebanowski

Novel directional β source

Goals: Direction

Source(s):
90
Sr \rightarrow 90 Y, endpoint 2.3 MeV 106 Ru \rightarrow 106 Rh, endpoint 3.5 MeV

Design:

- Modestly narrow beam of collimated electrons.
- Triggering on scintillating fibers (0.2 mm ←⇒ 33%) viewed by two Silicon PhotoMultipliers (SiPMs).
- ~Hz of tagged events (coinc. with detect.).
- Deployed at various polar & azimuthal orientations.

Status:

- Very good performance.
- More smaller sources under construction.

Directionality clear. Reconstruction performs well.

Directional Resolution of Cherenkov Light

• Low-energy electrons(positrons) travel only centimeters in water.

Length of the cone = track length

The light from a few centimeter-cone can be detected by kton detector?

Scattering angles are big for IBD events.

How big?

80~90 degree or isotropic?

RENO Well with 2000 PMTs

II WITH ZUUU PIVIIS

Thanks to 권순우 (RatPAC)

2D Event Display - Event 0

Top Cap

- 45

- 20 -JE Density

Angular distribution of neutron inverse beta decay, anti-neutrino(e) + p ---> e+ + n

P. Vogel (Caltech), John F. Beacom (Caltech)

Mar, 1999

10 pages

Published in: Phys. Rev. D 60 (1999) 053003

Scattering by 91~93 degree -> Slightly backward!

FIG. 1. Upper panel: total cross section for $\bar{\nu}_e + p \rightarrow e^+ + n$; bottom panel: $\langle \cos \theta \rangle$ for the same reaction; both as a function of the antineutrino energy. The solid line is our $\mathcal{O}(1/M)$ result and the short-dashed line is the $\mathcal{O}(1)$ result. The

FIG. 2. The same as Fig. 1, but over a larger range of antineutrino energy. The long-dashed and dot-dashed lines are nearly indistinguishable in the lower panel.

Concluding Remarks

WIND (WbLS in RENO FD)

WbLS is a novel type of particle detector to take advantage of both Cherenkov and scintillation light detection.

- Cherencov >> Directional info and fast timing
- Scintillation >> High LY and good energy resolution

RENO Site

- Renovate and reuse the neutrino detector hall and the well.
- Good size and distances from reactor plants in South Korea.
- Chance to validate the 5-MeV excess issue with water target.

Mehedi Masud for KPS 2025

WIND: sterile neutrino

$$\begin{split} P_{ee} &\simeq 1 - \sin^2\theta_{ee} \sin^2\!\left(\frac{\Delta m_{41}^2 L}{4E}\right) \\ &\qquad \qquad \text{where} \\ \sin^2\theta_{ee} &= \sin^2\theta_{ee}(\theta_{14},\theta_{12},\theta_{13}) \end{split}$$

$$\begin{split} \chi^2 = & \sum_{i=1}^{N_E} \frac{\left(O_i^{F/N} - T_i^{F/N}\right)^2}{U_i^{F/N}} + \sum_{d=N,F} \left(\frac{b^d}{\sigma_{\text{bkg}}^d}\right)^2 \\ & + \sum_{r=1}^6 \left(\frac{f_r}{\sigma_{\text{flux}}^r}\right)^2 + \left(\frac{\epsilon}{\sigma_{\text{eff}}}\right)^2 + \left(\frac{\eta}{\sigma_{\text{scale}}}\right)^2, \end{split}$$

GLoBES can be used for implementing sterile neutrinos and various systematic uncertainties for χ^2 calculation

WIND: looking into the sky

Substantial events from Sun and a future galactic Supernova burst

Directionality can be leveraged to identify events

Possibility of:

- Precision study for Δm_{21}^2 , θ_{12}
- Day-night asymmetry, matter effects, NSI
- Supernova constraints (e.g., using light bosons)
-

Projects of Water-Based Liquid Scintillator

Project	Size	Purpose	Status
BNL 1-ton WbLS	1 ton	- Study light yield, timing, and scaling potential	Operation
BNL 30-ton WbLS	30 ton	 To characterize the properties of WBLS as prototype for large-scale neutrino experiments Aiming to evaluate the scalability and stability Testbed for refining WbLS formulations, purification techniques, and deployment methods. 	Operation Mixing LS
EOS (UC Berkeley)	4 ton	 240 PMT The separation of Cherenkov and scintillation at a multiton scale. Directional Resolution with beta sources. Advanced photodetector technologies, e.g., fast-timing PMTs and Dichroic filters for spectral photon sorting. Expecting insights for the design of larger-scale detectors 	Commissioning
Theia-25 Theia-100	25 kton 100 kton	DUNE FD4 Neutrinoless Double Beta Decays	Conceptual Design

Projects of Water-Based Liquid Scintillator

Project	Size	Purpose	Status
ANNIE (Accelerator Neutrino Neutron Interaction Experiment)	366 liters	Neutron yields from nu-nucleus interactionFermilabNeutron tagging in a beam environment	Operation
CHESS (Cherenkov and Scintillation Separation)	~liters	Tabletop scaleTo study the separation of Cherenkov and scintillation light in WbLS operation	R&D
WATCHMAN (WATer Cherenkov Monitor for Anti-Neutrinos)	1 kton	 Under consideration for AIT-NEO (Advanced Instrumentation Testbed-Neutrino Expt. One) The feasibility of remote monitoring of nuclear reactors via antineutrino detection. To utilize WbLS to improve sensitivity to antineutrino signals USA and UK 	Under Development

WATCHMAN for Non-Proliferation

- 1100-m Boulby Underground Laboratory
- 1-kton WATCHMAN

• 30-ton BUTTON (Boulby Underground Technology Testbed for Observing Neutrinos)

>> Button1000

- Hartlepool Reactor
 - 26 km from Boulby
 - 2 cores of 1.5 GWth
- Heysham Reactor
 - 148 km from Boulby
 - 4 cores of 1.5 GWth

